Advertisement

On Inverse Full State Hybrid Function Projective Synchronization For Continuous-time Chaotic Dynamical Systems with Arbitrary Dimensions

  • Adel Ouannas
  • Ahmad Taher Azar
  • Toufik Ziar
Original Research

Abstract

Referring to continuous-time chaotic dynamical systems, this paper investigates the inverse full state hybrid function projective synchronization (IFSHFPS) of non-identical systems characterized by different dimensions. By taking a master system of dimension n and a slave system of dimension m, the method enables each master system state to be synchronized with a linear combination of slave system states, where the scaling factor of the linear combination can be any arbitrary differentiable function. The approach, based on the Lyapunov stability theory and stability of linear continuous-time systems, presents some useful features: (i) it enables non-identical chaotic systems with different dimension \(n<m\) or \(n>m\) to be synchronized; (ii) it can be applied to a wide class of chaotic (hyperchaotic) systems for any differentiable scaling function; (iii) it is rigorous, being based on two theorems, one for the case \(n<m\) and the other for the case \(n>m\). Two different numerical examples are reported. The examples clearly highlight the capability of the conceived approach in effectively achieving synchronized dynamics for any differentiable scaling function.

Keywords

Chaos Continuous-time systems Full state hybrid projective synchronization Inverse problem Different dimensions 

References

  1. 1.
    Azar, A.T., Vaidyanathan, S.: Chaos Modeling and Control Systems Design, Studies in Computational Intelligence, vol. 581. Studies in Computational Intelligence. Springer, Berlin (2015a)Google Scholar
  2. 2.
    Azar, A.T., Vaidyanathan, S.: Computational Intelligence Applications in Modelling and Control, vol. 575. Studies in Computational Intelligence. Springer, Berlin (2015b)Google Scholar
  3. 3.
    Azar, A.T., Vaidyanathan, S.: Handboook of Research on Advanced Intelligent Control Engineering and Automation. IGI Global, New York (2015c)Google Scholar
  4. 4.
    Azar, A.T., Vaidyanathan, S.: Advances in Chaos Theory and Intelligent Control, vol. 337. Springer, Berlin (2016)CrossRefMATHGoogle Scholar
  5. 5.
    Azar, A.T., Zhu, Q.: Advances and Applications in Sliding Mode Control systems, vol. 576. Studies in Computational Intelligence. Springer, Berlin (2015)Google Scholar
  6. 6.
    Azar, A.T., Vaidyanathan, S., Ouannas, A.: Fractional Order Control and Synchronization of Chaotic Systems, vol. 688. Studies in Computational Intelligence. Springer, Berlin (2017)Google Scholar
  7. 7.
    Bao, H., Park, J.H., Cao, J.: Synchronization of fractional-order delayed neural networks with hybrid coupling. Complexity 21, 106–112 (2016)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Boulkroune, A., Bouzeriba, A., Bouden, T., Azar, A.T.: Fuzzy adaptive synchronization of uncertain fractional-order chaotic systems. Advances in Chaos Theory and Intelligent Control, pp. 681–697. Springer, Berlin (2016a)Google Scholar
  9. 9.
    Boulkroune, A., Hamel, S., Azar, AT., Vaidyanathan, S.: Fuzzy Control-Based Function Synchronization of Unknown Chaotic Systems with Dead-Zone Input, pp 699–718. Springer, Cham (2016b). doi: 10.1007/978-3-319-30340-6_29
  10. 10.
    Cai, G., Yao, L., Hu, P., Fang, X.: Adaptive full state hybrid function projective synchronization of financial hyperchaotic systems with uncertain parameters. Discret. Contin. Dyn. Syst. Ser. B 18(8):2019–2028 (2013). doi: 10.3934/dcdsb.2013.18.2019. http://aimsciences.org/journals/displayArticlesnew.jsp?paperID=8778
  11. 11.
    Carroll, T.L., Pecora, L.M.: Synchronizing chaotic circuits. IEEE Trans. Circuits Syst. 38(4), 453–456 (1991). doi: 10.1109/31.75404 CrossRefMATHGoogle Scholar
  12. 12.
    Chong-Xin, L., Ling, L.: Circuit implementation of a new hyperchaos in fractional-order system. Chin. Phys. B 17(8):2829 (2008). http://stacks.iop.org/1674-1056/17/i=8/a=014
  13. 13.
    Chua, L., Komuro, M., Matsumoto, T.: The double scroll family. IEEE Trans. Circuits and Syst. 33(11), 1072–1118 (1986). doi: 10.1109/TCS.1986.1085869 CrossRefMATHGoogle Scholar
  14. 14.
    Grassi, G.: Arbitrary full-state hybrid projective synchronization for chaotic discrete-time systems via a scalar signal. Chin Phys B 21(6):060–504 (2012). http://stacks.iop.org/1674-1056/21/i=6/a=060504
  15. 15.
    Grassi, G.: Continuous-time chaotic systems: Arbitrary full-state hybrid projective synchronization via a scalar signal. Chin Phys B 22(8):080–505 (2013). http://stacks.iop.org/1674-1056/22/i=8/a=080505
  16. 16.
    Hu, M., Xu, Z., Zhang, R., Hu, A.: Adaptive full state hybrid projective synchronization of chaotic systems with the same and different order. Phys Lett A 365(4):315–327 (2007a). doi: 10.1016/j.physleta.2007.01.038. http://www.sciencedirect.com/science/article/pii/S037596010700117X
  17. 17.
    Hu, M., Xu, Z., Zhang, R., Hu, A.: Parameters identification and adaptive full state hybrid projective synchronization of chaotic (hyper-chaotic) systems. Phys Lett A 361(3), 231–237 (2007b)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Hu, M., Xu, Z., Zhang, R.: Full state hybrid projective synchronization in continuous-time chaotic (hyperchaotic) systems. Communications in Nonlinear Science and Numerical Simulation 13(2):456–464 (2008a). doi: 10.1016/j.cnsns.2006.05.003. http://www.sciencedirect.com/science/article/pii/S1007570406000931
  19. 19.
    Hu, M., Xu, Z., Zhang, R.: Full state hybrid projective synchronization of a general class of chaotic maps. Commun Nonlinear Sci Numer Simul 13(4):782–789 (2008b). doi: 10.1016/j.cnsns.2006.07.012. http://www.sciencedirect.com/science/article/pii/S1007570406001560
  20. 20.
    Ouannas, A., Al-sawalha, MM.: Synchronization between different dimensional chaotic systems using two scaling matrices. Optik - Int J Light Electron Optics 127(2):959–963 (2016). doi: 10.1016/j.ijleo.2015.10.174. http://www.sciencedirect.com/science/article/pii/S0030402615015429
  21. 21.
    Ouannas, A., Grassi, G.: Inverse full state hybrid projective synchronization for chaotic maps with different dimensions. Chin Phys B 25(9):090–503 (2016). http://stacks.iop.org/1674-1056/25/i=9/a=090503
  22. 22.
    Ouannas, A., Al-sawalha, M.M., Ziar, T.: Fractional chaos synchronization schemes for different dimensional systems with non-identical fractional-orders via two scaling matrices. Optik 127(20), 8410–8418 (2016a)CrossRefGoogle Scholar
  23. 23.
    Ouannas, A., Azar, AT., Abu-Saris, R.: A new type of hybrid synchronization between arbitrary hyperchaotic maps. Int. J. Mach. Learn. Cybern. 1–8 (2016b). doi: 10.1007/s13042-016-0566-3
  24. 24.
    Ouannas, A., Azar, AT., Vaidyanathan, S.: A robust method for new fractional hybrid chaos synchronization. Math. Methods Appl. Sci. (2016c). doi: 10.1002/mma.4099
  25. 25.
    Ouannas, A., Azar, A.T., Vaidyanathan, S.: New hybrid synchronization schemes based on coexistence of various types of synchronization between master-slave hyperchaotic systems. Int. J. Comput. Appl. Technol. 55(2), 112–120 (2017a)CrossRefGoogle Scholar
  26. 26.
    Ouannas, A., Azar, A.T., Vaidyanathan, S.: On a simple approach for q-s synchronization of chaotic dynamical systems in continuous-time. Int. J. Comput. Sci. Math. 8(1), 20–27 (2017b)CrossRefGoogle Scholar
  27. 27.
    Pecora, L.M., Carroll, T.L.: Synchronization of chaotic systems. Chaos 25(9), 097611 (2015)CrossRefGoogle Scholar
  28. 28.
    Ueta, T., Chen, G.: Bifurcation analysis of chen’s attractor. Int. J. Bifurc. Chaos 10(08), 1917–1931 (2000)CrossRefMATHGoogle Scholar
  29. 29.
    Vaidyanathan, S., Azar, A.T.: Analysis and control of a 4-d novel hyperchaotic system. In: Azar, A.T., Vaidyanathan, S. (eds.) Chaos Modeling and Control Systems Design, Studies in Computational Intelligence, vol. 581, pp. 19–38. Springer, Berlin (2015a)Google Scholar
  30. 30.
    Vaidyanathan, S., Azar, A.T.: Analysis, control and synchronization of a nine-term 3-d novel chaotic system. In: Azar, A.T., Vaidyanathan, S. (eds.) Chaos Modeling and Control Systems Design, Studies in Computational Intelligence, vol. 581, pp. 3–17. Springer, Berlin (2015b)Google Scholar
  31. 31.
    Vaidyanathan, S., Azar, A.T.: Anti-synchronization of identical chaotic systems using sliding mode control and an application to vaidyanathan-madhavan chaotic systems. In: Azar, A.T., Zhu, Q. (eds.) Advances and Applications in Sliding Mode Control Systems, Studies in Computational Intelligence, vol. 576, pp. 527–547. Springer, Berlin (2015c)Google Scholar
  32. 32.
    Vaidyanathan, S., Azar, A.T.: Hybrid synchronization of identical chaotic systems using sliding mode control and an application to vaidyanathan chaotic systems. In: Azar, A.T., Zhu, Q. (eds.) Advances and Applications in Sliding Mode Control Systems, Studies in Computational Intelligence, vol. 576, pp. 549–569. Springer, Berlin (2015d)Google Scholar
  33. 33.
    Vaidyanathan, S., Azar, A.T.: A novel 4-D four-wing chaotic system with four quadratic nonlinearities and its synchronization via adaptive control method. Advances in Chaos Theory and Intelligent Control, pp. 203–224. Springer, Berlin (2016a)CrossRefGoogle Scholar
  34. 34.
    Vaidyanathan, S., Azar, A.T.: Adaptive backstepping control and synchronization of a novel 3-D jerk system with an exponential nonlinearity. Advances in Chaos Theory and Intelligent Control, pp. 249–274. Springer, Berlin (2016b)CrossRefGoogle Scholar
  35. 35.
    Vaidyanathan, S., Azar, A.T.: Adaptive control and synchronization of Halvorsen circulant chaotic systems. Advances in Chaos Theory and Intelligent Control, pp. 225–247. Springer, Berlin (2016c)CrossRefGoogle Scholar
  36. 36.
    Vaidyanathan, S., Azar, A.T.: Dynamic analysis, adaptive feedback control and synchronization of an eight-term 3-D novel chaotic system with three quadratic nonlinearities. Advances in Chaos Theory and Intelligent Control, pp. 155–178. Springer, Berlin (2016d)CrossRefGoogle Scholar
  37. 37.
    Vaidyanathan, S., Azar, A.T.: Generalized projective synchronization of a novel hyperchaotic four-wing system via adaptive control method. Advances in Chaos Theory and Intelligent Control, pp. 275–290. Springer, Berlin (2016e)CrossRefGoogle Scholar
  38. 38.
    Vaidyanathan, S., Azar, A.T.: Takagi–Sugeno fuzzy logic controller for Liu-Chen four-scroll chaotic system. Int. J. Intell. Eng. Inform. 4(2), 135–150 (2016f)Google Scholar
  39. 39.
    Vaidyanathan, S., Azar, A.T., Rajagopal, K., Alexander, P.: Design and SPICE implementation of a 12-term novel hyperchaotic system and its synchronization via active control. Int. J. Model. Identif. Control 23(3), 267–277 (2015a)CrossRefGoogle Scholar
  40. 40.
    Vaidyanathan, S., Idowu, B.A., Azar, A.T.: Backstepping controller design for the global chaos synchronization of sprott’s jerk systems. In: Azar, A.T., Vaidyanathan, S. (eds.) Chaos Modeling and Control Systems Design, Studies in Computational Intelligence, vol. 581, pp. 39–58. Springer, Berlin (2015b)Google Scholar
  41. 41.
    Vaidyanathan, S., Sampath, S., Azar, A.T.: Global chaos synchronisation of identical chaotic systems via novel sliding mode control method and its application to Zhu system. Int. J. Model. Identif. Control 23(1), 92–100 (2015c)CrossRefGoogle Scholar
  42. 42.
    Wang, Z., Volos, C., Kingni, ST., Azar, AT., Pham, VT.: Four-wing attractors in a novel chaotic system with hyperbolic sine nonlinearity. Optik - Int. J. Light Electron Optics 131:1071–1078 (2017). doi: 10.1016/j.ijleo.2016.12.016. http://www.sciencedirect.com/science/article/pii/S0030402616315662
  43. 43.
    Xiao-hui, Z., Ke, S.: The control action of the periodic perturbation on a hyperchaotic system. Acta Physica Sinica (Overseas Edition) 8(9):651. http://stacks.iop.org/1004-423X/8/i=9/a=003 (1999)
  44. 44.
    Zhang, Q., an Lu, J.: Full state hybrid lag projective synchronization in chaotic (hyperchaotic) systems. Phys Lett A 372(9):1416– 421 (2008). doi: 10.1016/j.physleta.2007.09.051. http://www.sciencedirect.com/science/article/pii/S037596010701376X
  45. 45.
    Zhu, Q., Azar, A.T.: Complex System Modelling and Control Through Intelligent Soft Computations, vol. 319. Studies in Fuzziness and Soft Computing. Springer, Berlin (2015)Google Scholar

Copyright information

© Foundation for Scientific Research and Technological Innovation 2017

Authors and Affiliations

  1. 1.Laboratory of Mathematics, Informatics and Systems (LAMIS)University of Larbi TebessiTebessaAlgeria
  2. 2.Faculty of computers and informationBenha UniversityBanhaEgypt
  3. 3.Nile UniversityGizaEgypt
  4. 4.Department of Material SciencesUniversity of TebessaTebessaAlgeria

Personalised recommendations