LA-ICPMS in-situ U-Pb Geochronology of Low-Uranium Carbonate Minerals and Its Application to Reservoir Diagenetic Evolution Studies

Abstract

Reconstruction of the diagenetic evolution of reservoirs is one of the most significant tasks in oil and gas exploration and development. Assessing the accurate timing of diagenetic events is critical to better understand the process of reservoir evolution, but the isotope dating of diagenetic events is technically challenging. This paper uses three case studies in the sedimentary basins in China to demonstrate the promising application of recently developed LA-(MC)-ICPMS in-situ U-Pb geochronology. Our results show that the new U-Pb dating method provides a reliable and efficient chronological approach to determine the absolute ages of diagenetic events. For example, the U-Pb age data of the Cambrian carbonate reservoir in the Tarim Basin reveals three diagenetic events at 526±14, 515±21, and 481±4.6 Ma, respectively. It is worth noting that microscopic observations are particularly important for improving the success rate of U-Pb dating. In addition, the recent progress and future prospects in the in-situ U-Pb dating method are also discussed in this study, suggesting that this method is currently hindered by the lack of international carbonate standards for data correction.

This is a preview of subscription content, access via your institution.

References Cited

  1. Burisch, M., Gerdes, A., Walter, B. F., et al., 2017. Methane and the Origin of Five-Element Veins: Mineralogy, Age, Fluid Inclusion Chemistry and Ore Forming Processes in the Odenwald, SW Germany. Ore Geology Reviews, 81: 42–61. https://doi.org/10.1016/j.oregeorev.2016.10.033

    Article  Google Scholar 

  2. Cao, Y. C., Wang, Y. Z., Gluyas, J. G., et al., 2018. Depositional Model for Lacustrine Nearshore Subaqueous Fans in a Rift Basin: The Eocene Shahejie Formation, Dongying Sag, Bohai Bay Basin, China. Sedimentology, 65(6): 2117–2148. https://doi.org/10.1111/sed.12459

    Article  Google Scholar 

  3. Cao, Y. C., Xi, K. L., Wang, Y. Z., et al., 2013. Quantitative Research on Porosity Evolution of Reservoirs in Member 4 of Paleogene Shahejie Formation in Hexiwu Tectonic Zone of Langgu Sag, Jizhong Depression. Journal of Palaeogeograhy, 15(5): 593–604 (in Chinese with English Abstract)

    Google Scholar 

  4. Cheng, T., Zhao, J. X., Feng, Y. X., et al., 2020. In-situ LA-MC-ICPMS U-Pb Dating Method for Low-Uranium Carbonate Minerals. China Science Bulletin, 65: 150–154 (in Chinese with English Abstract)

    Article  Google Scholar 

  5. Coogan, L. A., Parrish, R. R., Roberts, N. M. W., 2016. Early Hydrothermal Carbon Uptake by the Upper Oceanic Crust: Insight from in situ U-Pb Dating. Geology, 44(2): 147–150. https://doi.org/10.1130/g37212.1

    Article  Google Scholar 

  6. Drake, H., Heim, C., Roberts, N. M. W., et al., 2017. Isotopic Evidence for Microbial Production and Consumption of Methane in the Upper Continental Crust Throughout the Phanerozoic Eon. Earth and Planetary Science Letters, 470: 108–118. https://doi.org/10.1016/j.epsl.2017.04.034

    Article  Google Scholar 

  7. Drost, K., Chew, D., Petrus, J. A., et al., 2018. An Image Mapping Approach to U-Pb LA-ICP-MS Carbonate Dating and Applications to Direct Dating of Carbonate Sedimentation. Geochemistry, Geophysics, Geosystems, 19(12): 4631–4648. https://doi.org/10.1029/2018gc007850

    Article  Google Scholar 

  8. Gao, L. H., Han, Z. Z., Han, Y., et al., 2013. Controlling of Cements and Physical Property of Sandstone by Fault as Observed in Well Xia503 of Huimin Sag, Linnan Sub-Depression. Science China Earth Sciences, 56(11): 1942–1952. https://doi.org/10.1007/s11430-013-4655-9

    Article  Google Scholar 

  9. Godeau, N., Deschamps, P., Guihou, A., et al., 2018. U-Pb Dating of Calcite Cement and Diagenetic History in Microporous Carbonate Reservoirs: Case of the Urgonian Limestone, France. Geology, 46(3): 247–250. https://doi.org/10.1130/g39905.1

    Article  Google Scholar 

  10. Goodfellow, B. W., Viola, G., Bingen, B., et al., 2017. Palaeocene Faulting in SE Sweden from U-Pb Dating of Slickenfibre Calcite. Terra Nova, 29(5): 321–328. https://doi.org/10.1111/ter.12280

    Article  Google Scholar 

  11. Guo, X. W., Chen, J. X., Yuan, S. Q., et al., 2020. Constraint of in situ Calcite U-Pb Dating by Laser Ablation on Geochronology of Hydrocarbon Accumulation in Petroliferous Basins: A Case Study of Dongying Sag in the Bohai Bay Basin. Acta Petrolei Sinica, 41(3): 284–291 (in Chinese with English Abstract)

    Google Scholar 

  12. Han, C., Jiang, Z. X., Han, M., et al., 2016. The Lithofacies and Reservoir Characteristics of the Upper Ordovician and Lower Silurian Black Shale in the Southern Sichuan Basin and Its Periphery, China. Marine and Petroleum Geology, 75: 181–191. https://doi.org/10.1016/j.marpetgeo.2016.04.014

    Article  Google Scholar 

  13. Hansman, R. J., Albert, R., Gerdes, A., et al., 2018. Absolute Ages of Multiple Generations of Brittle Structures by U-Pb Dating of Calcite. Geology, 46(3): 207–210. https://doi.org/10.1130/g39822.1

    Article  Google Scholar 

  14. Hill, C. A., Polyak, V. J., Asmerom, Y., et al., 2016. Constraints on a Late Cretaceous Uplift, Denudation, and Incision of the Grand Canyon Region, Southwestern Colorado Plateau, USA, from U-Pb Dating of Lacustrine Limestone. Tectonics, 35(4): 896–906. https://doi.org/10.1002/2016tc004166

    Article  Google Scholar 

  15. Jia, Q., Lü, D. W., He, M., et al., 2010. Fusulinid and Foraminifera in Carboniferous-Permian Taiyuan Formation in Yanzhou Coalfield, Shandong, Northeast China. Journal of Earth Science, 21(S1): 82–85. https://doi.org/10.1007/s12583-010-0175-0

    Article  Google Scholar 

  16. Li, Q., Parrish, R. R., Horstwood, M. S. A., et al., 2014. U-Pb Dating of Cements in Mesozoic Ammonites. Chemical Geology, 376: 76–83. https://doi.org/10.1016/j.chemgeo.2014.03.020

    Article  Google Scholar 

  17. Li, Z., Chen, J. S., Guan, P., 2006. Scientific Problems and Frontiers of Sedimentary Diagenesis Research in Oil-Bearing Basins. Acta Petrologica Sinica, 22(8): 2113–2122 (in Chinese with English Abstract)

    Google Scholar 

  18. Liang, C., Cao, Y. C., Liu, K. Y., et al., 2018. Diagenetic Variation at the Lamina Scale in Lacustrine Organic-Rich Shales: Implications for Hydrocarbon Migration and Accumulation. Geochimica et Cosmochimica Acta, 229: 112–128. https://doi.org/10.1016/j.gca.2018.03.017

    Article  Google Scholar 

  19. Liang, X., Liu, S. G., Wang, S. B., et al., 2019. Analysis of the Oldest Carbonate Gas Reservoir in China—New Geological Significance of the Dengying Gas Reservoir in the Weiyuan Structure, Sichuan Basin. Journal of Earth Science, 30(2): 348–366. https://doi.org/10.1007/s12583-017-0962-y

    Article  Google Scholar 

  20. Liu, E. T., Wang, H., Li, Y., et al., 2014. Sedimentary Characteristics and Tectonic Setting of Sublacustrine Fans in a Half-Graben Rift Depression, Beibuwan Basin, South China Sea. Marine and Petroleum Geology, 52: 9–21. https://doi.org/10.1016/j.marpetgeo.2014.01.008

    Article  Google Scholar 

  21. Liu, E. T., Wang, H., Li, Y., et al., 2015. Relative Role of Accommodation Zones in Controlling Stratal Architectural Variability and Facies Distribution: Insights from the Fushan Depression, South China Sea. Marine and Petroleum Geology, 68: 219–239. https://doi.org/10.1016/j.marpetgeo.2015.08.027

    Article  Google Scholar 

  22. Liu, E. T., Zhao, J. X., Pan, S. Q., et al., 2019. A New Technology of Basin Fluid Geochronology: In situ U-Pb Dating of Calcite. Earth Science, 44(3): 698–712 (in Chinese with English Abstract)

    Google Scholar 

  23. Ludwig, K. R., 2012. User’s Manual for Isoplot 3.75–4.15, Berkeley Geochronology Center

  24. MacDonald, J. M., Faithfull, J. W., Roberts, N. M. W., et al., 2019. Clumped-Isotope Palaeothermometry and LA-ICP-MS U-Pb Dating of Lava-Pile Hydrothermal Calcite Veins. Contributions to Mineralogy and Petrology, 174(7): 63. https://doi.org/10.1007/s00410-019-1599-x

    Article  Google Scholar 

  25. Methner, K., Mulch, A., Fiebig, J., et al., 2016. Rapid Middle Eocene Temperature Change in Western North America. Earth and Planetary Science Letters, 450: 132–139. https://doi.org/10.1016/j.epsl.2016.05.053

    Article  Google Scholar 

  26. Nuriel, P., Craddock, J., Kylander-Clark, A. R. C., et al., 2019. Reactivation History of the North Anatolian Fault Zone Based on Calcite Age-Strain Analyses. Geology, 47(5): 465–469. https://doi.org/10.1130/g45727.1

    Article  Google Scholar 

  27. Nuriel, P., Weinberger, R., Kylander-Clark, A. R. C., et al., 2017. The Onset of the Dead Sea Transform Based on Calcite Age-Strain Analyses. Geology, 45(7): 587–590. https://doi.org/10.1130/g38903.1

    Article  Google Scholar 

  28. Pang, X. Q., 2010. Key Challenges and Research Methods of Petroleum Exploration in the Deep of Superimposed Basins in Western China. Oil & Gas Geology, 31(5): 517–533 (in Chinese with English Abstract)

    Google Scholar 

  29. Parrish, R. R., Parrish, C. M., Lasalle, S., et al., 2018. Vein Calcite Dating Reveals Pyrenean Orogen as Cause of Paleogene Deformation in Southern England. Journal of the Geological Society, 175(3): 425–442. https://doi.org/10.1144/jgs2017-107

    Article  Google Scholar 

  30. Paton, C., Hellstrom, J., Paul, B., et al., 2011. Iolite: Freeware for the Visualisation and Processing of Mass Spectrometric Data. Journal of Analytical Atomic Spectrometry, 26(12): 2508. https://doi.org/10.1039/c1ja10172b

    Article  Google Scholar 

  31. Qiu, L. W., Yang, S. C., Qu, C. S., et al., 2017. A Comprehensive Porosity Prediction Model for the Upper Paleozoic Tight Sandstone Reservoir in the Daniudi Gas Field, Ordos Basin. Journal of Earth Science, 28(6): 1086–1096. https://doi.org/10.1007/s12583-016-0935-2

    Article  Google Scholar 

  32. Rasbury, E. T., Cole, J. M., 2009. Directly Dating Geologic Events: U-Pb Dating of Carbonates. Reviews of Geophysics, 47(3): RG3001. https://doi.org/10.1029/2007rg000246

    Article  Google Scholar 

  33. Ring, U., Gerdes, A., 2016. Kinematics of the Alpenrhein-Bodensee Graben System in the Central Alps: Oligocene/Miocene Transtension Due to Formation of the Western Alps Arc. Tectonics, 35(6): 1367–1391. https://doi.org/10.1002/2015tc004085

    Article  Google Scholar 

  34. Roberts, N. M. W., Rasbury, E. T., Parrish, R. R., et al., 2017. A Calcite Reference Material for LA-ICP-MS U-Pb Geochronology. Geochemistry, Geophysics, Geosystems, 18(7): 2807–2814. https://doi.org/10.1002/2016gc006784

    Article  Google Scholar 

  35. Roberts, N. M. W., Walker, R. J., 2016. U-Pb Geochronology of Calcite-Mineralized Faults: Absolute Timing of Rift-Related Fault Events on the Northeast Atlantic Margin. Geology, 44(7): 531–534. https://doi.org/10.1130/g37868.1

    Article  Google Scholar 

  36. Scherer, M., 1987. Parameters Influencing Porosity in Sandstones: A Model for Sandstone Porosity Prediction: ERRATUM. AAPG Bulletin, 71: 485–491. https://doi.org/10.1306/703c80fb-1707-11d7-8645000102c1865d

    Article  Google Scholar 

  37. Shen, A. J., Hu, A. P., Cheng, T., et al., 2019. Laser Ablation in-situ U-Pb Dating and Its Application to Diagenesis-Porosity Evolution of Carbonate Reservoirs. Petroleum Exploration and Development, 46(6): 1127–1140. https://doi.org/10.1016/s1876-3804(19)60268-5

    Article  Google Scholar 

  38. Shen, T. T., Wu, F. Y., Zhang, L. F., et al., 2016. In-situ U-Pb Dating and Nd Isotopic Analysis of Perovskite from a Rodingite Blackwall Associated with UHP Serpentinite from Southwestern Tianshan, China. Chemical Geology, 431: 67–82. https://doi.org/10.1016/j.chemgeo.2016.03.029

    Article  Google Scholar 

  39. Shi, H. S., Lei, Y. C., Wu, M. H., et al., 2008. Research on the Evolution of Pores in Deep Sandstone Reservoir in ZHU 1 Depression. Earth Science Frontiers, 15(1): 169–175 (in Chinese with English Abstract)

    Google Scholar 

  40. Smith, P. E., Farquhar, R. M., 1989. Direct Dating of Phanerozoic Sediments by the 238U-206Pb Method. Nature, 341(6242): 518–521. https://doi.org/10.1038/341518a0

    Article  Google Scholar 

  41. Walter, B. F., Gerdes, A., Kleinhanns, I. C., et al., 2018. The Connection between Hydrothermal Fluids, Mineralization, Tectonics and Magmatism in a Continental Rift Setting: Fluorite Sm-Nd and Hematite and Carbonates U-Pb Geochronology from the Rhinegraben in SW Germany. Geochimica et Cosmochimica Acta, 240: 11–42. https://doi.org/10.1016/j.gca.2018.08.012

    Article  Google Scholar 

  42. Wang, D. D., Shao, L. Y., Li, Z. X., et al., 2016. Hydrocarbon Generation Characteristics, Reserving Performance and Preservation Conditions of Continental Coal Measure Shale Gas: A Case Study of Mid-Jurassic Shale Gas in the Yan’an Formation, Ordos Basin. Journal of Petroleum Science and Engineering, 145: 609–628. https://doi.org/10.1016/j.petrol.2016.06.031

    Article  Google Scholar 

  43. Wang, G. W., Chang, X. C., Yin, W., et al., 2017. Impact of Diagenesis on Reservoir Quality and Heterogeneity of the Upper Triassic Chang 8 Tight Oil Sandstones in the Zhenjing Area, Ordos Basin, China. Marine and Petroleum Geology, 83: 84–96. https://doi.org/10.1016/j.marpetgeo.2017.03.008

    Article  Google Scholar 

  44. Wang, G., Qin, Y., Shen, J., et al., 2018. Dynamic-Change Laws of the Porosity and Permeability of Low- To Medium-Rank Coals under Heating and Pressurization Treatments in the Eastern Junggar Basin, China. Journal of Earth Science, 29(3): 607–615. https://doi.org/10.1007/s12583-017-0908-4

    Article  Google Scholar 

  45. Woodhead, J., Pickering, R., 2012. Beyond 500 Ka: Progress and Prospects in the U-Pb Chronology of Speleothems, and Their Application to Studies in Palaeoclimate, Human Evolution, Biodiversity and Tectonics. Chemical Geology, 322/323: 290–299. https://doi.org/10.1016/j.chemgeo.2012.06.017

    Article  Google Scholar 

  46. Xi, K. L., Cao, Y. C., Wang, Y. Z., et al., 2015. Factors Influencing Physical Property Evolution in Sandstone Mechanical Compaction: The Evidence from Diagenetic Simulation Experiments. Petroleum Science, 12: 391–405. https://doi.org/10.1007/s12182-015-0045-6

    Article  Google Scholar 

  47. Xi, K. L., Cao, Y. C., Wang, Y. Z., et al., 2015. Factors Influencing Physical Property Evolution in Sandstone Mechanical Compaction: The Evidence from Diagenetic Simulation Experiments. Petroleum Science, 12(3): 391–405. https://doi.org/10.1007/s12182-015-0045-6

    Article  Google Scholar 

  48. Yan, S., Zhou, R. J., Niu, H. C., et al., 2019. LA-MC-ICP-MS U-Pb Dating of Low-U Garnets Reveals Multiple Episodes of Skarn Formation in the Volcanic-hosted Iron Mineralization System, Awulale Belt, Central Asia. GSA Bulletin, 132(5/6): 1031–1045. https://doi.org/10.1130/b35214.1

    Google Scholar 

  49. Yang, R. C., Fan, A. P., Han, Z. Z., et al., 2017. Lithofacies and Origin of the Late Triassic Muddy Gravity-Flow Deposits in the Ordos Basin, Central China. Marine and Petroleum Geology, 85: 194–219. https://doi.org/10.1016/j.marpetgeo.2017.05.005

    Article  Google Scholar 

  50. Yang, Y., Jiang, Z. X., Zhang, X. L., et al., 2010. Controlling Factors of and Lithofacies Interpretation for Tight Reservoirs in He-3 Member of Daniudi Gas Field. Journal of Northwest University (Natural Science Edition), 40(4): 699–702 (in Chinese with English Abstract)

    Google Scholar 

  51. Zhang, J. G., Jiang, Z. X., Jiang, X. L., et al., 2016. Oil Generation Induces Sparry Calcite Formation in Lacustrine Mudrock, Eocene of East China. Marine and Petroleum Geology, 71: 344–359. https://doi.org/10.1016/j.marpetgeo.2016.01.007

    Article  Google Scholar 

  52. Zhang, T., Zhang, X. G., Lin, C. Y., et al., 2015. Seismic Sedimentology Interpretation Method of Meandering Fluvial Reservoir: From Model to Real Data. Journal of Earth Science, 26(4): 598–606. https://doi.org/10.1007/s12583-015-0572-5

    Article  Google Scholar 

  53. Zhao, W. Z., Shen, A. J., Qiao, Z. F., et al., 2018. A Research on Genetic Types and Distinguished Characteristics of Dolostone, and the Origin of Dolostone Reservoirs. Petroleum Exploration and Development, 45(6): 1–13 (in Chinese with English Abstract)

    Article  Google Scholar 

  54. Zou, C. N., Dong, D. Z., Wang, Y. M., et al., 2015. Shale Gas in China: Characteristics, Challenges and Prospects (I). Petroleum Exploration and Development, 42(6): 753–767. https://doi.org/10.1016/s1876-3804(15)30072-0

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China program (Nos. 42072142, 41702121, U19B2007), the Major National Science and Technology Programs in the “Thirteenth Five-Year” Plan period (No. 2016ZX05024-006-002) and the PetroChina Innovation Foundation (No. 2018D-5007-0104). We thank guest editor Changqian Ma for his invitation and the reviewers for their constructive review comments. We are grateful to Dr Tianbo Yang who provides thin section and cathode luminescence images. The final publication is available at Springer via https://doi.org/10.1007/s12583-020-1084-5.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Entao Liu or Jian-Xin Zhao.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, E., Zhao, JX., Wang, H. et al. LA-ICPMS in-situ U-Pb Geochronology of Low-Uranium Carbonate Minerals and Its Application to Reservoir Diagenetic Evolution Studies. J. Earth Sci. (2021). https://doi.org/10.1007/s12583-020-1084-5

Download citation

Key Words

  • LA-ICPMS U-Pb geochronology
  • carbonate minerals
  • diagenetic evolution
  • reservoir
  • sedimentary basin