Skip to main content
Log in

Hypervelocity Impacts and Exposed Lithospheric Mantle: A Way to Recognize Large Terrestrial Impact Basins?

  • Special Issue on Ophiolite, Orogenic Magmatism and Metamorphism Dedicated to IGCP 649: Diamonds and Recycled Mantle
  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

On the Moon and Mars olivine of probable mantle origin is detected at rims of large Late Heavy Bombardment (LHB) age impact basins for which excavation depth estimates exceed crustal thickness estimates. But lunar Crisium size impact basins are not recognized on Earth nor expected in the Phanerozoic from conventional interpretations of crater size frequency distributions. In this study several large circular to elliptical basin structures on Earth, for which hypothesized impact excavation depth would greatly exceed crustal thickness, are examined for the presence of exposed lithospheric mantle, expressed as ophiolite, at the rims. Three Phanerozoic impact basins, modified by plate tectonics and tentatively correlated with “ophiolite obduction” plus global extinction events, are proposed here. These tentatively suggested Phanerozoic impact basins are: (1) Yucatan Basin/Puerto Rico Trench with a Greater Antilles ophiolite rim. Cretaceous-Paleogene Boundary global extinction may correlate with Maastrichtian ophiolite obduction in Southeast Cuba. (2) Loyalty Basin with a New Caledonia ophiolite plus d’Entrecasteaux Ridge rim. Late Eocene global extinction may correlate with obduction of the New Caledonia Peridotite Nappe. (3) Sulu Sea Basin with a Palawan, Sabah etc. ophiolite rim. The Middle Miocene Disruption Event may correlate with ophiolite obduction plus ophiolitic mélange emplacement in Sabah and in Palawan. These originally circular to elliptical belts of exposed lithospheric mantle may serve as strain markers for relative plate motions in the vicinity of plate boundaries during post-impact geologic times. It is further speculated that plate boundaries may be initiated and/or modified by such impacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

Download references

Acknowledgments

Bob Coleman, Norm Sleep, Jingsui Yang, Manuel Iturralde-Vinent, Angelica Isabel Llanes Castro, Dominique Cluzel, Jonathan Aitcheson, Dave Walker, Sarah Stewart, Jay Melosh, Michael Manga, Bruce Bohor, Bruce Buffett, Walter Alvarez, Alicia Cowart, Jaime Urrutia, Mark Richards, Steve Self, Max Rudolph, Brook Peterson, John Wakabayashi, Raymond Jeanloz, Roland Burgmann, Inez Fung, Tim Teague, Bob Grill, Diane Tompkins, Mark Greenside, Qingzhu Yin, Matt Sanborn, Al Verstuyf, Paul Henshaw, Linda Swift, Rodney Yee, Siri Brown, Wise Allen, Maurice Jones, Rochelle Olive, Char Perlas, Tim Karas, and my students are all acknowledged. The final publication is available at Springer via https://doi.org/10.1007/s12583-019-1225-x.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Olds.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olds, P. Hypervelocity Impacts and Exposed Lithospheric Mantle: A Way to Recognize Large Terrestrial Impact Basins?. J. Earth Sci. 30, 451–459 (2019). https://doi.org/10.1007/s12583-019-1225-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-019-1225-x

Key Words

Navigation