Skip to main content
Log in

Geochronology and Geochemistry of the Granites from the Longtoushan Hydrothermal Gold Deposit in the Dayaoshan Area, Guangxi: Implication for Petrogenesis and Mineralization

  • Petrogeochemistry and Mineral Deposits
  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

The gold mineralization in the Longtoushan hydrothermal gold deposit is concentrated within the contact zone of the granitic complex. Whole rock geochemistry and in-situ U-Pb and Hf isotopic data were used to constrain the genesis and age of the granites and related Cu-Au mineralization in the Longtoushan Deposit. The granites mainly consist of the granite porphyry, rhyolite porphyry, porphyritic granite and quartz porphyry. LA-ICP-MS U-Pb dating of zircons from the granite porphyry, rhyolite porphyry and quartz porphyry indicates that they intruded from ca. 94 to 97 Ma. These intrusions exhibit similar trace element characteristics, i.e., right-dipping REE patterns, depletion of Ba, Sr, P and Ti, and enrichment of Th, U, Nd, Zr and Hf. The εHf (t) values of zircons from the granite porphyry, rhyolite porphyry and quartz porphyry range from −26.81 to −8.19, −8.12 to −5.33, and −8.99 to −5.83, respectively, suggesting that they were mainly derived from the partial melting of the Proterozoic crust. The Cu-Au mineralization is mainly related to the rhyolite porphyry and porphyritic granite, respectively. The Longtoushan granites were most likely formed in a post-collisional extensional environment, and the deposit is a part of the Late Yanshanian magmatism related mineralization in the Dayaoshan area and its adjacent areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Alderton, D. H. M., Pearce, J. A., Potts, P. J., 1980. Rare Earth Element Mobility during Granite Alteration: Evidence from Southwest England. Earth and Planetary Science Letters, 49(1): 149–165. https://doi.org/10.1016/0012-821x(80)90157-0

    Article  Google Scholar 

  • Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses That do not Report 204Pb. Chemical Geology, 192(1/2): 59–79. https://doi.org/10.1016/s0009-2541(02)00195-x

    Article  Google Scholar 

  • Bi, S. J., Yang, Z., Li, W., et al., 2015. Discovery of Late Cretaceous Baoshan Porphyry Copper Deposit in Dayaoshan, Qinhang Metallogenic Belt: Constraints from Zircon U-Pb Age and Hf Isotope. Earth Science, 40(9): 1458–1479 (in Chinese with English Abstract)

    Google Scholar 

  • Blichert-Toft, J., Albarède, F., 1997. The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-Crust System. Earth and Planetary Science Letters, 148(1/2): 243–258. https://doi.org/10.1016/s0012-821x(97)00040-x

    Article  Google Scholar 

  • Boztug, D., Harlavan, Y., Arehart, G., et al., 2007. K-Ar Age, Whole-Rock and Isotope Geochemistry of A-Type Granitoids in the Divrigi-Sivas Region, Eastern-Central Anatolia, Turkey. Lithos, 97(1/2): 193–218. https://doi.org/10.1016/j.lithos.2006.12.014

    Article  Google Scholar 

  • Bureau of Geology and Mineral Resources of Guangxi Zhuang Autonomous Region (BGMRGZAR), 1985. Regional Geology of Guangxi Zhuang Autonomous Region. Geological Publishing House, Beijing (in Chinese)

    Google Scholar 

  • Chen, C., Lü, X. B., Wu, C. M., et al., 2018. Origin and Geodynamic Implications of Concealed Granite in Shadong Tungsten Deposit, Xinjiang, China: Zircon U-Pb Chronology, Geochemistry, and Sr-Nd-Hf Isotope Constraint. Journal of Earth Science, 29(1): 114–129. https://doi.org/10.1007/s12583-017-0808-7

    Article  Google Scholar 

  • Chen, F. W., Li, H. Q., Mei, Y. P., 2008. Zircon SHRIMP U-Pb Chronology of Diagenetic Mineralization of the Longtoushan Porphyry Gold Ore-field, Gui County, Guangxi. Acta Geologica Sinica, 82(7): 921–926 (in Chinese with English Abstract)

    Google Scholar 

  • Chen, M. H., Li, Z. Y., Li, Q., et al., 2015. A Preliminary Study of Multi-Stage Granitoids and Related Metallogenic Series in Dayaoshan Area of Guangxi, China. Earth Science Frontiers, 22(2): 41–53 (in Chinese with English Abstract)

    Google Scholar 

  • Dong, B. L., 1990. Sibao Group in Guangxi and Its Metallogeny. Geology of Guangxi, 3(1): 53–58 (in Chinese with English Abstract)

    Google Scholar 

  • Duan, R. C., Ling, W. L., Li, Q., et al., 2011. Correlations of the Late Yanshanian Tectonomagmatic Events with Metallogenesis in South China: Geochemical Constraints from the Longtoushan Gold Ore Deposit of the Dayaoshan Area, Guangxi Province. Acta Geologica Sinica, 85(10): 1644–1658 (in Chinese with English Abstract)

    Google Scholar 

  • Elburg, M. A., 1996. U-Pb Ages and Morphologies of Zircon in Microgranitoid Enclaves and Peraluminous Host Granite: Evidence for Magma Mingling. Contributions to Mineralogy and Petrology, 123(2): 177–189. https://doi.org/10.1007/s004100050149

    Article  Google Scholar 

  • Greentree, M. R., Li, Z. X., Li, X. H., et al., 2006. Late Mesoproterozoic to Earliest Neoproterozoic Basin Record of the Sibao Orogenesis in Western South China and Relationship to the Assembly of Rodinia. Precambrian Research, 151(1/2): 79–100. https://doi.org/10.1016/j.precamres.2006.08.002

    Article  Google Scholar 

  • Griffin, W. L., Pearson, N. J., Belousova, E., et al., 2000. The Hf Isotope Composition of Cratonic Mantle: LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133–147. https://doi.org/10.1016/s0016-7037(99)00343-9

    Article  Google Scholar 

  • Hofmann, A. W., 1988. Chemical Differentiation of the Earth: The Relationship between Mantle, Continental Crust, and Oceanic Crust. Earth and Planetary Science Letters, 90(3): 297–314. https://doi.org/10.1016/0012-821x(88)90132-x

    Article  Google Scholar 

  • Hu, S. Q., Zhou, G. F., Peng, S. B., et al., 2012. Chronology and Geochemical Characteristics of Quartz Monzonite (Porphyry) in the Dali Copper-Molybdenum Deposit and Its Geological Significance. Acta Geologica Sinica, 33(1): 23–37 (in Chinese with English Abstract)

    Google Scholar 

  • Hu, Z. C., Liu, Y. S., Chen, L., et al., 2011. Contrasting Matrix Induced Elemental Fractionation in NIST SRM and Rock Glasses during Laser Ablation ICP-MS Analysis at High Spatial Resolution. Journal of Analytical Atomic Spectrometry, 26(2): 425–430. https://doi.org/10.1039/c0ja00145g

    Article  Google Scholar 

  • Huang, H. M., He, Z. J., Cui, B., 2003. Metallogenic Series of Granite in Dayaoshan of Guangxi. Geology and Prospecting, 39(4): 12–16 (in Chinese with English Abstract)

    Google Scholar 

  • Huang, M. Z., Chen, W. S., Li, W. Z., et al., 1999. Longtoushan Gold Deposit of Subvolcanic-Cryptoexplosion Breccia Type, Guangxi. Acta Geoscientia Sinica, 20(1): 39–46 (in Chinese with English Abstract)

    Google Scholar 

  • Jackson, S. E., Pearson, N. J., Griffin, W. L., et al., 2004. The Application of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry to in situ U-Pb Zircon Geochronology. Chemical Geology, 211(1/2): 47–69. https://doi.org/10.1016/j.chemgeo.2004.06.017

    Article  Google Scholar 

  • Kinny, P. D., Maas, R., 2003. Lu-Hf and Sm-Nd Isotope Systems in Zircon. In: Hanchar, J. M., Hoskin, P. W. O., eds., Zircon. Reviews in Mineralogy & Geochemistry, 53: 327–341. https://doi.org/10.2113/0530327

    Article  Google Scholar 

  • Knudsen, T. L., Griffin, W., Hartz, E., et al., 2001. In-Situ Hafnium and Lead Isotope Analyses of Detrital Zircons from the Devonian Sedimentary Basin of NE Greenland: A Record of Repeated Crustal Reworking. Contributions to Mineralogy and Petrology, 141(1): 83–94. https://doi.org/10.1007/s004100000220

    Article  Google Scholar 

  • Li, Q., Duan, R. C., Ling, W. L., et al., 2009. Detrital Zircon U-Pb Geochronology of the Early Paleozoic Strata in Eastern Guangxi and Its Constraint on the Caledonian Tectonic Nature of the Cathaysian Continental Block. Earth Science, 34(1): 189–202 (in Chinese with English Abstract)

    Google Scholar 

  • Li, S. R., Wang, D. H., Liang, T., et al., 2008. Metallogenic Epochs of the Damingshan Tungsten Deposit in Guangxi and Its Prospecting Potential. Acta Geologica Sinica, 82: 873–879 (in Chinese with English Abstract)

    Google Scholar 

  • Li, T., 1976. Chemical Element Abundances in the Earth and Its Major Shells. Journal of Geochimica, 3: 167–174 (in Chinese)

    Google Scholar 

  • Li, X. H., Li, Z. X., Li, W. X., 2014. Detrital Zircon U-Pb Age and Hf Isotope Constrains on the Generation and Reworking of Precambrian Continental Crust in the Cathaysia Block, South China: A Synthesis. Gondwana Research, 25(3): 1202–1215. https://doi.org/10.1016/j.gr.2014.01.003

    Article  Google Scholar 

  • Lin, Z. Y., Wang, D. H., Li, S. R., 2008. Re-Os Isotopic Age of Molybdenite from the Wangshe Copper-Tungsten Deposit in Guangxi Province and Their Implications. Acta Geologica Sinica, 82: 1565–1571 (in Chinese with English Abstract)

    Google Scholar 

  • Liu, T. F., 1993. The Characteristics of Granitoid in East Guangxi and Its Relation with Gold Deposit. Guangxi Geology, 6(4): 77–86 (in Chinese with English Abstract)

    Google Scholar 

  • Liu, Y. S., Hu, Z. C., Zong, K. Q., et al., 2010. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535–1546 (in Chinese)

    Article  Google Scholar 

  • Liu, Z. Q., Tang, D. C., 2007. Geological Features and Genesis of the Gold Deposits in Longshan Ore Field, Guigang, Guangxi. Gansu Metallurgy, 29(5): 30–33 (in Chinese)

    Google Scholar 

  • Ludwig, K. R., 2003. User’s Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, Berkeley

    Google Scholar 

  • MacLean, W. H., 1990. Mass Change Calculations in Altered Rock Series. Mineralium Deposita, 25(1): 44–49. https://doi.org/10.1007/bf03326382

    Article  Google Scholar 

  • Mao, J. W., Chen, M. H., Yuan, S. D., et al., 2011. Geological Characteristics of the Qinhang (or Shihang) Metallogenic Belt in South China and Spatial-Temporal Distribution Regularity of Mineral Deposits. Acta Geologica Sinica, 85(5): 636–658 (in Chinese with English Abstract)

    Google Scholar 

  • McDonough, W. F., Sun, S. S., 1995. The Composition of the Earth. Chemical Geology, 120(3/4): 223–253. https://doi.org/10.1016/0009-2541(94)00140-4

    Article  Google Scholar 

  • Pan, X. F., Hou, Z. Q., Zhao, M., et al., 2018. Geochronology and Geochemistry of the Granites from the Zhuxi W-Cu Ore Deposit in South China: Implication for Petrogenesis, Geodynamical Setting and Mineralization. Lithos, 304–307: 155–179. https://doi.org/10.1016/j.lithos.2018.01.014

    Article  Google Scholar 

  • Pearce, J. A., 1996. Sources and Settings of Granitic Rocks. Episodes, 19(4): 120–125

    Google Scholar 

  • Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956–983. https://doi.org/10.1093/petrology/25.4.956

    Article  Google Scholar 

  • Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. In: Holland, H. D., Turekian, K. K., eds., Treatise on Geochemistry. Elsevier, Amsterdam

    Google Scholar 

  • Schmidberger, S. S., Hegner, E., 1999. Geochemistry and Isotope Systematics of Calc-Alkaline Volcanic Rocks from the Saar-Nahe Basin (SW Germany)—Implications for Late-Variscan Orogenic Development. Contributions to Mineralogy and Petrology, 135(4): 373–385. https://doi.org/10.1007/s004100050518

    Article  Google Scholar 

  • Shu, L. S., Faure, M., Yu, J. H., et al., 2011. Geochronological and Geochemical Features of the Cathaysia Block (South China): New Evidence for the Neoproterozoic Breakup of Rodinia. Precambrian Research, 187(3/4): 263–276. https://doi.org/10.1016/j.precamres.2011.03.003

    Article  Google Scholar 

  • Stepanov, A. S., Hermann, J., 2013. Fractionation of Nb and Ta by Biotite and Phengite: Implications for the “Missing Nb Paradox”. Geology, 41(3): 303–306. https://doi.org/10.1130/g33781.1

    Article  Google Scholar 

  • Tao, S. L., Lai, J. Q., Zhang, J. D., et al., 2017. Geochemical Characteristics of Auriferous Pyrite in Longtoushan Gold Deposit, Guangxi Province, China. The Chinese Journal of Nonferrous Metals, 27(6): 1263–1279 (in Chinese with English Abstract)

    Google Scholar 

  • Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Wang, C. H., 2011. Metallogenic Model and Prognosis of the Longtoushan Gold Field, the Guangxi Zhuang Autonomous Region, China: [Dissertation]. Chinese Academy of Geological Sciences, Beijing (in Chinese with English Abstract)

    Google Scholar 

  • Wang, C. H., Wang, D. H., Li, H. Q., et al., 2012. Molybdenite Re-Os Datings for the Pingtianshan Mo Spot in the Southwest Region of the Dayaoshan Uplift Area in Guangxi and Its Geological Implication. Mineral Deposits, 31(Suppl.1): 605–606 (in Chinese with English Abstract)

    Google Scholar 

  • Wang, Q., Zhao, Z. H., Jian, P., et al., 2005. Geochronology of Cretaceous A-Type Granitoids or Alkaline Intrusive Rocks in the Hinterland, South China: Constraints for Late-Mesozoic Tectonic Evolution. Acta Petrologica Sinica, 21: 795–808 (in Chinese with English Abstract)

    Google Scholar 

  • Wiedenbeck, M., Allé, P., Corfu, F., et al., 1995. Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and Ree Analyses. Geostandards and Geoanalytical Research, 19(1): 1–23. https://doi.org/10.1111/j.1751-908x.1995.tb00147.x

    Article  Google Scholar 

  • Wu, F. Y., Li, X. H., Zheng, Y. F., et al., 2007. Lu-Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23(2): 185–220 (in Chinese with English Abstract)

    Google Scholar 

  • Xie, L. S., Sun, B. D., 1993. Geological Characteristics of Longtoushan Volcanic-Subvolcanic Gold Deposit, Guigang City, Guangxi. Guangxi Geology, 6(4): 27–42 (in Chinese with English Abstract)

    Google Scholar 

  • Xiong, F. H., Ma, C. Q., Jiang, H., et al., 2016. Geochronology and Petrogenesis of Triassic High-K Calc-Alkaline Granodiorites in the East Kunlun Orogen, West China: Juvenile Lower Crustal Melting during Post- Collisional Extension. Journal of Earth Science, 27(3): 474–490. https://doi.org/10.1007/s12583-016-0674-6

    Article  Google Scholar 

  • Xu, X. S., O’Reilly, S. Y., Griffin, W. L., et al., 2007. The Crust of Cathaysia: Age, Assembly and Reworking of Two Terranes. Precambrian Research, 158(1/2): 51–78. https://doi.org/10.1016/j.precamres.2007.04.010

    Article  Google Scholar 

  • Yu, J. H., O’Reilly, S. Y., Wang, L. J., et al., 2010. Components and Episodic Growth of Precambrian Crust in the Cathaysia Block, South China: Evidence from U-Pb Ages and Hf Isotopes of Zircons in Neoproterozoic Sediments. Precambrian Research, 181(1–4): 97–114. https://doi.org/10.1016/j.precamres.2010.05.016

    Article  Google Scholar 

  • Zhang, C. P., Zeng, N. S., 2014. Geochemical Characteristics of Ore-Bearing Rocks in Longtoushan Gold Geposit, Guangxi Province. Gold Science Technology, 22(2): 17–23 (in Chinese with English Abstract)

    Google Scholar 

  • Zhang, X. B., Wang, K. Y., Wang, C. Y., et al., 2017. Age, Genesis, and Tectonic Setting of the Mo-W Mineralized Dongshanwan Granite Porphyry from the Xilamulun Metallogenic Belt, NE China. Journal of Earth Science, 28(3): 433–446. https://doi.org/10.1007/s12583-016-0934-1

    Article  Google Scholar 

  • Zhao, Z. H., 1987. Calculation of δEu Values. Geology-Geochemistry, 6: 70 (in Chinese)

    Google Scholar 

  • Zou, H. P., Du, X. D., Lao, M. J., et al., 2014. Detrital Zircon U-Pb Geochronology of Cambrian Sandstones in Damingshan, Central Guangxi and Its Tectonic Implications. Acta Geologica Sinica, 88: 1800–1819 (in Chinese with English Abstract)

    Google Scholar 

Download references

Acknowledgements

This study was supported by the Project of Innovationdriven Plan in Central South University (No. 2015CX008) and the Fundamental Reserch Funds for the Central Universities of Central South University (No. 2015zzts071). Conggao Liang and Rui Huang are thanked for their invaluable help and support during fieldwork. The U-Pb dating and in situ Hf ratio analyses of the zircons were carried out at Nanjing FocuMS Contract Testing Co. Ltd., with support from Liang Li and Jianfeng Gao. We appreciate two anonymous reviewers, who helped to improve the paper greatly. Moreover, we thank Miao Yu, Quan Ou and Wenzhou Xiao for their constructive reviews and useful suggestions. The final publication is available at Springer via https://doi.org/10.1007/s12583-018-1204-7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianqing Lai.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, L., Lai, J., Hu, L. et al. Geochronology and Geochemistry of the Granites from the Longtoushan Hydrothermal Gold Deposit in the Dayaoshan Area, Guangxi: Implication for Petrogenesis and Mineralization. J. Earth Sci. 30, 309–322 (2019). https://doi.org/10.1007/s12583-018-1204-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-018-1204-7

Key Words

Navigation