Skip to main content
Log in

Phase Equilibria Modeling and P-T Evolution of the Mafic Lower-Crustal Xenoliths from the Southeastern Margin of the North China Craton

  • Precambrian Metamorphism-Magmatism and Tectonics of the North China Craton and Erguna Massif
  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

The Precambrian lower crust rocks at the southeastern margin of the North China Craton (NCC) are mainly exposed as granulite xenoliths hosted by Mesozoic dioritic porphyry and metamorphic terrains in the Xuzhou-Suzhou area. Garnet amphibolites and garnet granulites are two kinds of typical lower-crustal xenoliths and were selected to reconstruct different stages of the metamorphic process. In this study, in view of multistage metamorphic evolution and reworking, phase equilibria modeling was used for the first time to better constrain peak P-T conditions of the xenoliths. Some porphyroblastic garnets have a weak zonal structure in composition with homogeneous cores and were surrounded by thin rims with an increase in XMg and a decrease in XCa (or XMg). Clinopyroxene contain varying amounts of Na2O and Al2O3 as well as amphibole of TiO2, while plagioclases are different in calcium contents. Peak metamorphic P-T conditions are calculated by the smallest garnet x(g) (Fe2+/(Fe2++Mg)) contours and the smallest plagioclase ca(pl) (Ca/(Ca+Na)) contours in NCFMASHTO (Na2O-CaO-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3) system, which are consistent with those estimated by conventional geothermobarometry. The new results show that the peak and decompressional P-T conditions for the rocks are 850–900 °C/ 1.4–1.6 GPa and 820–850 °C/0.9–1.3 GPa, respectively, suggestive of high and middle-low pressure granulite-facies metamorphism. Combined with previous zircon U-Pb dating and conventional geothermobarometry data, it is indicated that the xenoliths experienced a clockwise P-T-t evolution with nearisothermal decompressional process, suggestive of the Paleoproterozoic subduction-collision setting. In this regard, the studied region together with Jiao-Liao-Ji belt is further documented to make up a Paleoproterozoic collisional orogen in the eastern block of the NCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Ague, J. J., Eckert, J. O. Jr., 2012. Precipitation of Rutile and Ilmenite Needles in Garnet: Implications for Extreme Metamorphic Conditions in the Acadian Orogen, U.S.A.. American Mineralogist, 97(5/6): 840–855. https://doi.org/10.2138/am.2012.4015

    Article  Google Scholar 

  • Ague, J. J., Eckert, J. O. Jr., Chu, X., et al., 2013. Discovery of Ultrahigh-Temperature Metamorphism in the Acadian Orogen, Connecticut, USA. Geology, 41(2): 271–274. https://doi.org/10.1130/g33752.1

    Article  Google Scholar 

  • Bhadra, S., Bhattacharya, A., 2007. The Barometer Tremolite+Tschermakite+ 2Albite=2Pargasite+8Quartz: Constraints from Experimental Data at Unit Silica Activity, with Application to Garnet-Free Natural Assemblages. American Mineralogist, 92(4): 491–502. https://doi.org/10.2138/am.2007.2067

    Article  Google Scholar 

  • Bohlen, S. R., 1991. On the Formation of Granulites. Journal of Metamorphic Geology, 9(3): 223–229. https://doi.org/10.1111/j.1525-1314.1991.tb00518.x

    Article  Google Scholar 

  • Brown, M., 1993. P-T-t Evolution of Orogenic Belts and the Causes of Regional Metamorphism. Journal of the Geological Society, 150(2): 227–241. https://doi.org/10.1144/gsjgs.150.2.0227

    Article  Google Scholar 

  • Brown, M., 2009. Metamorphic Patterns in Orogenic Systems and the Geological Record. The Geological Society, London, Special Publications, 318(1): 37–74. https://doi.org/10.1144/sp318.2

    Article  Google Scholar 

  • Brown, M., 2014. The Contribution of Metamorphic Petrology to Understanding Lithosphere Evolution and Geodynamics. Geoscience Frontiers, 5(4): 553–569. https://doi.org/10.1016/j.gsf.2014.02.005

    Article  Google Scholar 

  • Carswell, D. A., O’Brien, P. J., 1993. Thermobarometry and Geotectonic Significance of High-Pressure Granulites: Examples from the Moldanubian Zone of the Bohemian Massif in Lower Austria. Journal of Petrology, 34(3): 427–459. https://doi.org/10.1093/petrology/34.3.427

    Article  Google Scholar 

  • Chen, N.-S., Sun, M., Yang, Y., et al., 2003. Metamorphic Garnet’s Compositional Zoning and Metamorphism Process. Earth Science Frontiers, 10(3): 315–320 (in Chinese with English Abstract)

    Google Scholar 

  • Connolly, J. A. D., 1990. Multivariable Phase Diagrams: An Algorithm Based on Generalized Thermodynamics. American Journal of Science, 290(6): 666–718. https://doi.org/10.2475/ajs.290.6.666

    Article  Google Scholar 

  • Cooke, R. A., 2000. High-Pressure/Temperature Metamorphism in the St. Leonhard Granulite Massif, Austria: Evidence from Intermediate Pyroxene-Bearing Granulites. International Journal of Earth Sciences, 89(3): 631–651. https://doi.org/10.1007/s0053100001.3

    Google Scholar 

  • Dale, J., Holland, T., Powell, R., 2000. Hornblende-Garnet-Plagioclase Thermobarometry: A Natural Assemblage Calibration of the Thermodynamics of Hornblende. Contributions to Mineralogy and Petrology, 140(3): 353–362. https://doi.org/10.1007/s0041000001.7

    Article  Google Scholar 

  • Eckert, J. O. Jr., Newton, R. C., Kleppa, O. J., 1991. The ΔH of Reaction and Recalibration of Garnet-Pyroxene-Plagioclase-Quartz Geobameters in the CMAS System by Solution Calorimertry. American Mineralogist, 76(1/2): 148–160

    Google Scholar 

  • England, P. C., Thompson, A. B., 1984. Pressure-Temperature-Time Paths of Regional Metamorphism I. Heat Transfer during the Evolution of Regions of Thickened Continental Crust. Journal of Petrology, 25(4): 894–928. https://doi.org/10.1093/petrology/25.4.894

    Google Scholar 

  • Frost, B. R., Chacko, T., 1989. The Granulite Uncertainty Principle: Limitations on Thermobarometry in Granulites. The Journal of Geology, 97(4): 435–450. https://doi.org/10.1086.629321

    Article  Google Scholar 

  • Fuhrman, M. L., Frost, B. R., Lindsley, D. H., 1988. Crystallization Conditions of the Sybille Monzosyenite, Laramie Anorthosite Complex, Wyoming. Journal of Petrology, 29(3): 699–729. https://doi.org/10.1093/petrology/29.3.699

    Article  Google Scholar 

  • Ganguly, J., Cheng, W. J., Tirone, M., 1996. Thermodynamics of Aluminosilicate Garnet Solid Solution: New Experimental Data, an Optimized Model, and Thermometric Applications. Contributions to Mineralogy and Petrology, 126(1/2): 137–151. https://doi.org/10.1007/s0041000502.0

    Article  Google Scholar 

  • Guo, J. H., OʼBrien, P. J., Zhai, M., 2002. High-Pressure Granulites in the Sanggan Area, North China Craton: Metamorphic Evolution, P-T Paths and Geotectonic Significance. Journal of Metamorphic Geology, 20(8): 741–756. https://doi.org/10.1046/j.1525-1314.2002.00401.x

    Article  Google Scholar 

  • Guo, J. H., Sun, M., Chen, F. K., et al., 2005. Sm-Nd and SHRIMP U-Pb Zircon Geochronology of High-Pressure Granulites in the Sanggan Area, North China Craton: Timing of Paleoproterozoic Continental Collision. Journal of Asian Earth Sciences, 24(5): 629–642. https://doi.org/10.1016/j.jseaes.2004.01.017

    Article  Google Scholar 

  • Guo, S. S., Li, S. G., 2009. SHRIMP Zircon U-Pb Ages for the Paleoproterozoic Metamorphic-Magmatic Events in the Southeast Margin of the North China Craton. Science in China Series D: Earth Sciences, 52(8): 1039–1045. https://doi.org/10.1007/s11430-009-0099.7

    Article  Google Scholar 

  • Hammarstrom, J. M., Zen, E. A., 1986. Aluminum in Hornblende: An Empirical Igneous Geobarometer. America Mineralogist, 71(11/12): 1297–1313

    Google Scholar 

  • Harley, S. L., 1989. The Origins of Granulites: A Metamorphic Perspective. Geological Magazine, 126(3): 215–247. https://doi.org/10.1017/s00167568000223.0

    Article  Google Scholar 

  • Harley, S. L., 1998. On the Occurrence and Characterization of Ultrahigh-Temperature Crustal Metamorphism. Geological Society, London, Special Publications, 138(1): 81–107. https://doi.org/10.1144/gsl.sp.1996.138.01.06

    Article  Google Scholar 

  • Harley, S. L., 2008. Refining the P-T Records of UHT Crustal Metamorphism. Journal of Metamorphic Geology, 26(2): 125–154. https://doi.org/10.1111/j.1525-1314.2008.00765.x

    Article  Google Scholar 

  • Hermann, J., Rubatto, D., 2003. Relating Zircon and Monazite Domains to Garnet Growth Zones: Age and Duration of Granulite Facies Metamorphism in the Val Malenco Lower Crust. Journal of Metamorphic Geology, 21(9): 833–852. https://doi.org/10.1046/j.1525-1314.2003.00484.x

    Article  Google Scholar 

  • Holland, T. J. B., Blundy, J., 1994. Non-Ideal Interactions in Calcic Amphiboles and their Bearing on Amphibole-Plagioclase Thermometry. Contributions to Mineralogy and Petrology, 116(4): 433–447. https://doi.org/10.1007/bf003109.0

    Article  Google Scholar 

  • Holland, T. J. B., Powell, R., 1998. An Internally Consistent Thermodynamic Data Set for Phases of Petrological Interest. Journal of Metamorphic Geology, 16(3): 309–343. https://doi.org/10.1111/j.1525-1314.1998.00140.x

    Article  Google Scholar 

  • Holland, T. J. B., Powell, R., 2001. Calculation of Phase Relations Involving Haplogranitic Melts Using an Internally Consistent Thermodynamic Dataset. Journal of Petrology, 42(4): 673–683. https://doi.org/10.1093/petrology/42.4.673

    Article  Google Scholar 

  • Hollister, L. S., Grissom, G. C., Peters, E. K., et al., 1987. Confirmation of the Empirical Correlation of Al in Hornblende with Pressure of Solidification of Calc-Alkaline Plutons. American Mineralogist, 72(3/4): 231–239

    Google Scholar 

  • Hou, G. T., Liu, Y. L., Li, J. H., 2006. Evidence for ~1.8Ga Extension of the Eastern Block of the North China Craton from SHRIMP U-Pb Dating of Mafic Dyke Swarms in Shandong Province. Journal of Asian Earth Sciences, 27(4): 392–401. https://doi.org/10.1016/j.jseaes.2005.05.001

    Article  Google Scholar 

  • Hou, G. T., Li, J. H., Yang, M. H., et al., 2008. Geochemical Constraints on the Tectonic Environment of the Late Paleoproterozoic Mafic Dyke Swarms in the North China Craton. Gondwana Research, 13(1): 103–116. https://doi.org/10.1016/j.gr.2007.06.005

    Article  Google Scholar 

  • Hou, Z., Wang, C., 2007. Determination of 35 Trace Elements in Geological Samples by Inductively Coupled Plasma Mass Spectrometry. Journal of University of Science and Technology of China, 37: 940–944 (in Chinese with English Abstract)

    Google Scholar 

  • Ji, W. Q., Xu, W. L., Wang, Q. H., et al., 2005. Structural, Mineralogical and Genetic Significance of Hornblende from Eclogites in Xuzhou-Suzhou Area. Journal of Mineralogy and Petrology, 25(4): 11–16 (in Chinese with English Abstract)

    Google Scholar 

  • Jiao, S. J., Guo, J. H., Mao, Q., et al., 2011. Application of Zr-in-Rutile Thermometry: A Case Study from Ultrahigh-Temperature Granulites of the Khondalite Belt, North China Craton. Contributions to Mineralogy and Petrology, 162: 379–393. https://doi.org/10.1007/s00410-010-0602.3

    Article  Google Scholar 

  • Johnson, M. C., Rutherford, M. J., 1989. Experimental Calibration of the Aluminum-in-Hornblende Geobarometer with Application to Long Valley Caldera (California) Volcanic Rocks. Geology, 17(9): 837–841. https://doi.org/10.1130/0091-7613(1989)017<0837:ecotai>2.3.co;2

    Article  Google Scholar 

  • Kelsey, D. E., 2008. On Ultrahigh-Temperature Crustal Metamorphism. Gondwana Research, 13(1): 1–29. https://doi.org/10.1016/j.gr.2007.06.001

    Article  Google Scholar 

  • Kelsey, D. E., Hand, M., 2015. On Ultrahigh Temperature Crustal Metamorphism: Phase Equilibria, Trace Element Thermometry, Bulk Composition, Heat Sources, Timescales and Tectonic Settings. Geoscience Frontiers, 6(3): 311–356. https://doi.org/10.1016/j.gsf.2014.09.006

    Article  Google Scholar 

  • Kempton, P. D., Downes, H., Embey-Isztin, A., 1997. Mafic Granulite Xenoliths in Neogene Alkali Basalts from the Western Pannonian Basin: Insights into the Lower Crust of a Collapsed Orogen. Journal of Petrology, 38(7): 941–970. https://doi.org/10.1093/petroj/38.7.941

    Article  Google Scholar 

  • Klaver, M., de Roever, E. W. F., Nanne, J. A. M., et al., 2015. Charnockites and UHT Metamorphism in the Bakhuis Granulite Belt, Western Suriname: Evidence for Two Separate UHT Events. Precambrian Research, 262: 1–19. https://doi.org/10.1016/j.precamres.2015.02.014

    Article  Google Scholar 

  • Kotková, J., Harley, S. L., 2010. Anatexis during High-Pressure Crustal Metamorphism: Evidence from Garnet-Whole-Rock REE Relationships and Zircon-Rutile Ti-Zr Thermometry in Leucogranulites from the Bohemian Massif. Journal of Petrology, 51(10): 1967–2001. https://doi.org/10.1093/petrology/egq0.5

    Article  Google Scholar 

  • Li, S. Z., Zhao, G. C., Santosh, M., et al., 2012. Paleoproterozoic Structural Evolution of the Southern Segment of the Jiao-Liao-Ji Belt, North China Craton. Precambrian Research, 200–203: 59–73. https://doi.org/10.1016/j.precamres.2012.01.007

    Google Scholar 

  • Liu, D. Y., Nutman, A. P., Compston, W., et al., 1992. Remnants of ≥3.800 Ma Crust in the Chinese Part of the Sino-Korean Craton. Geology, 20(4): 339. https://doi.org/10.1130/0091-7613(1992)020<0339:romcit>2.3.co;2

    Article  Google Scholar 

  • Liu, P. H., Liu, F. L., Liu, C. H., et al., 2013. Petrogenesis, P-T-t Path, and Tectonic Significance of High-Pressure Mafic Granulites from the Jiaobei Terrane, North China Craton. Precambrian Research, 233: 237–258. https://doi.org/10.1016/j.precamres.2013.05.003

    Article  Google Scholar 

  • Liu, P. H., Liu, F. L., Wang, F., 2015. P-T-t Paths of the Multiple Metamorphic Events of the Jiaobei Terrane in the Southeastern Segment of the Jiao-Liao-Ji Belt (JLJB), in the North China Craton: Implication for Formation and Evolution of the JLJB. Acta Petrologica Sinica, 31(10): 2889–2941 (in Chinese with English Abstract)

    Google Scholar 

  • Liu, S. W., Zhang, J., Li, Q. G., et al., 2012. Geochemistry and U-Pb Zircon Ages of Metamorphic Volcanic Rocks of the Paleoproterozoic Lüliang Complex and Constraints on the Evolution of the Trans-North China Orogen, North China Craton. Precambrian Research, 222/223: 173–190. https://doi.org/10.1016/j.precamres.2011.07.006

    Article  Google Scholar 

  • Liu, S. W., Zhao, G. C., Wilde, S. A., et al., 2006. Th-U-Pb Monazite Geochronology of the Lüliang and Wutai Complexes: Constraints on the Tectonothermal Evolution of the Trans-North China Orogen. Precambrian Research, 148(3/4): 205–224. https://doi.org/10.1016/j.precamres.2006.04.003

    Article  Google Scholar 

  • Liu, Y. C., Deng, L. P., Gu, X. F., et al., 2015a. Application of Ti-in-Zircon and Zr-in-Rutile Thermometers to Constrain High-Temperature Metamorphism in Eclogites from the Dabie Orogen, Central China. Gondwana Research, 27(1): 410–423. https://doi.org/10.1016/j.gr.2013.10.011

    Article  Google Scholar 

  • Liu, Y. C., Wang, C. C., Zhang, P. G., et al., 2015b. Growth and Metamorphic Evolution of the Precambrian Lower Crust at the Southeastern Margin of the North China Block. Acta Petrologica Sinica, 31: 2847–2862 (in Chinese with English Abstract)

    Google Scholar 

  • Liu, Y. C., Gu, X. F., Rolfo, F., et al., 2011. Ultrahigh-Pressure Metamorphism and Multistage Exhumation of Eclogite of the Luotian Dome, North Dabie Compl.xZone (Central China): Evidence from Mineral Inclusions and Decompression Textures. Journal of Asian Earth Sciences, 42(4): 607–617. https://doi.org/10.1016/j.jseaes.2010.10.016

    Article  Google Scholar 

  • Liu, Y. C., Wang, A. D., 2012. Episodic Growth and Multiple Modification of Precambrian Lower Crust in the Southeastern Margin of North China Craton: Petrologic, Geochronological and Hf-Isotopic Ebidences. Journal of Earth Sciences and Environment, 34(4): 1–11 (in Chinese with English Abstract)

    Article  Google Scholar 

  • Liu, Y. C., Wang, A. D., Li, S. G., et al., 2013. Composition and Geochronology of the Deep-Seated Xenoliths from the Southeastern Margin of the North China Craton. Gondwana Research, 23(3): 1021–1039. https://doi.org/10.1016/j.gr.2012.06.009

    Article  Google Scholar 

  • Liu, Y. C., Wang, A. D., Rolfo, F., et al., 2009. Geochronological and Petrological Constraints on Palaeoproterozoic Granulite Facies Metamorphism in Southeastern Margin of the North China Craton. Journal of Metamorphic Geology, 27(2): 125–138. https://doi.org/10.1111/j.1525-1314.2008.00810.x

    Article  Google Scholar 

  • Liu, Y. C., Zhang, P. G., Wang, C. C., et al., 2017. Petrology, Geochemistry and Zirconology of Impure Calcite Marbles from the Precambrian Metamorphic Basement at the Southeastern Margin of the North China Craton. Lithos, 290/291: 189–209. https://doi.org/10.1016/j.lithos.2017.08.011

    Article  Google Scholar 

  • Liu, Y. C., Zhang, P. G., Wang, C. C., et al., 2016. Paleoproterozoic Multistage Metamorphic Ages Registered in the Precambrian Basement Rocks at the Southeastern Margin of the North China Craton and their Geological Implications. Acta Geologica Sinica—English Edition, 90(6): 2265–2266. https://doi.org/10.1111/1755-6724.13038

    Article  Google Scholar 

  • Nie, J. Z., Liu, Y. C., Yang, Y., 2018. Metamorphic Evolution and P-T Paths of the Precambrian Lower-Crust Mafic Xenoliths from Jiagou Area at the Southeastern Margin of the North China Craton. Journal of Mineral and Petrology, 38: 65–79 (in Chinese with English Abstract)

    Google Scholar 

  • O’Brien, P. J., Kröner, A., Jaeckel, P., et al., 1997. Petrological and Isotopic Studies on Palaeozoic High-Pressure Granulites, Gory Sowie Mts, Polish Sudetes. Journal of Petrology, 38(4): 433–456. https://doi.org/10.1093/petroj/38.4.433

    Article  Google Scholar 

  • O’Brien, P. J., Rötzler, J., 2003. High-Pressure Granulites: Formation, Recovery of Peak Conditions and Implications for Tectonics. Journal of Metamorphic Geology, 21(1): 3–20. https://doi.org/10.1046/j.1525-1314.2003.00420.x

    Article  Google Scholar 

  • Palin, R. M., White, R. W., Green, E. C. R., et al., 2016. High-Grade Metamorphism and Partial Melting of Basic and Intermediate Rocks. Journal of Metamorphic Geology, 34(9): 871–892

    Article  Google Scholar 

  • Pattison, D. R. M., Chacko, T., Farquhar, J., et al., 2003. Temperatures of Granulite-Facies Metamorphism: Constraints from Experimental Phase Equilibria and Thermobarometry Corrected for Retrograde Exchange. Journal of Petrology, 44(5): 867–900. https://doi.org/10.1093/petrology/44.5.867

    Article  Google Scholar 

  • Peng, P., Zhai, M. G., Zhang, H. F., et al., 2005. Geochronological Constraints on the Paleoproterozoic Evolution of the North China Craton: SHRIMP Zircon Ages of Different Types of Mafic Dikes. International Geology Review, 47(5): 492–508. https://doi.org/10.2747/0020-6814.47.5.492

    Article  Google Scholar 

  • Proyer, A., Habler, G., Abart, R., et al., 2013. TiO2 Exsolution from Garnet by Open-System Precipitation: Evidence from Crystallographic and Shape Preferred Orientation of Rutile Inclusions. Contributions to Mineralogy and Petrology, 166(1): 211–234. https://doi.org/10.1007/s00410-013-0872.7

    Article  Google Scholar 

  • Ravana, E. K., 2000. The Garnet-Clinopyroxene Fe2+-Mg Geothermometer: An Updated Calibration. Journal of Metamorphic Geology, 18(2): 211–219. https://doi.org/10.1046/j.1525-1314.2000.00247.x

    Article  Google Scholar 

  • Roever, E. W. F., de Lafon, J. M., Delor, C., et al., 2003. The Bakhuis Ultrahigh-Temperature Granulite Belt (Suriname): I. Petrological and Geochronological Evidence for a Counterclockwise P-T Path at 2.07–2.05 Ga. Géologie De La France, (2–4): 175–205

    Google Scholar 

  • Rudnick, R. L., 1995. Making Continental Crust. Nature, 378(6557): 571–578. https://doi.org/10.1038/378571.0

    Article  Google Scholar 

  • Sandiford, M., Powell, R., 1986. Deep Crustal Metamorphism during Continental Extension: Modern and Ancient Examples. Earth and Planetary Science Letters, 79(1/2): 151–158. https://doi.org/10.1016/0012-821x(86)90048.8

    Article  Google Scholar 

  • Santosh, M., 2010. Assembling North China Craton within the Columbia Supercontinent: The Role of Double-Sided Subduction. Precambrian Research, 178(1/2/3/4): 149–167. https://doi.org/10.1016/j.precamres.2010.02.003

    Article  Google Scholar 

  • Santosh, M., Liu, D. Y., Shi, Y. R., et al., 2013. Paleoproterozoic Accretionary Orogenesis in the North China Craton: A SHRIMP Zircon Study. Precambrian Research, 227: 29–54. https://doi.org/10.1016/j.precamres.2011.11.004

    Article  Google Scholar 

  • Schmidt, M. W., 1992. Amphibole Composition in Tonalite as a Function of Pressure: An Experimental Calibration of the Al-in-Hornblende Barometer. Contributions to Mineralogy and Petrology, 110(2/3): 304–310. https://doi.org/10.1007/bf003107.5

    Article  Google Scholar 

  • Song, S. G., Zhang, L. F., Niu, Y. L., 2004. Ultra-Deep Origin of Garnet Peridotite from the North Qaidam Ultrahigh-Pressure Belt, Northern Tibetan Plateau, NW China. American Mineralogist, 89(8/9): 1330–1336. https://doi.org/10.2138/am-2004-8.922

    Article  Google Scholar 

  • Spear, F. S., Florence, F. P., 1992. Thermobarometry in Granulites: Pitfalls and New Approaches. Precambrian Research, 55(1/2/3/4): 209–241. https://doi.org/10.1016/0301-9268(92)90025-j

    Google Scholar 

  • Tam, P. Y., Zhao, G. C., Zhou, X. W., et al., 2012. Metamorphic P-T Path and Implications of High-Pressure Pelitic Granulites from the Jiaobei Massif in the Jiao-Liao-Ji Belt, North China Craton. Gondwana Research, 22(1): 104–117. https://doi.org/10.1016/j.gr.2011.09.006

    Article  Google Scholar 

  • Tang, L., Santosh, M., Dong, Y. P., et al., 2016. Early Paleozoic Tectonic Evolution of the North Qinling Orogenic Belt: Evidence from Geochemistry, Phase Equilibrium Modeling and Geochronology of Metamorphosed Mafic Rocks from the Songshugou Ophiolite. Gondwana Research, 30: 48–64. https://doi.org/10.1016/j.gr.2014.10.006

    Article  Google Scholar 

  • Trap, P., Faure, M., Lin, W., et al., 2009. The Zanhuang Massif, the Second and Eastern Suture Zone of the Paleoproterozoic Trans-North China Orogen. Precambrian Research, 172(1/2): 80–98. https://doi.org/10.1016/j.precamres.2009.03.011

    Article  Google Scholar 

  • Trap, P., Faure, M., Lin, W., et al., 2012. Paleoproterozoic Tectonic Evolution of the Trans-North China Orogen: Toward a Comprehensive Model. Precambrian Research, 222/223: 191–211. https://doi.org/10.1016/j.precamres.2011.09.008

    Google Scholar 

  • Vernon, R. H., 2004. A Practical Guide to Rock Microstructure. Cambridge University Press, Cambridge. 169–264

    Book  Google Scholar 

  • Wang, A. D., Liu, Y. C., Santosh, M., et al., 2013. Zircon U-Pb Geochronology, Geochemistry and Sr-Nd-Pb Isotopes from the Metamorphic Basement in the Wuhe Complex: Implications for Neoarchean Active Continental Margin along the Southeastern North China Craton and Constraints on the Petrogenesis of Mesozoic Granitoids. Geoscience Frontiers, 4(1): 57–71. https://doi.org/10.1016/j.gsf.2012.05.001

    Article  Google Scholar 

  • Wang, A. D., Liu, Y. C., Gu, X. F., et al., 2012. Late-Neoarchean Magmatism and Metamorphism at the Southeastern Margin of the North China Craton and Their Tectonic Implications. Precambrian Research, 220/221: 65–79. https://doi.org/10.1016/j.precamres.2012.07.011

    Article  Google Scholar 

  • Wang, C. C., Liu, Y. C., Yang, Y., et al., 2018. Metamorphic Evolution of Mafic Granulites from the Wuhe Complex at the Southeastern Margin of the North China Craton. Earth Science, 43(1): 296–316 (in Chinese with English Abstract)

    Google Scholar 

  • Wang, C. C., Liu, Y. C., Zhang, P. G., et al., 2017. Zircon U-Pb Geochronology and Geochemistry of Two Types of Paleoproterozoic Granitoids from the Southeastern Margin of the North China Craton: Constraints on Petrogenesis and Tectonic Significance. Precambrian Research, 303: 268–290. https://doi.org/10.1016/j.precamres.2017.04.015

    Article  Google Scholar 

  • Wang, Q. H., Xu, W. L., Yang, D. B., et al., 2011. Geochemical Characteristics and Significance of Microelement in Eclogite-Like Inclusions Hosted by Mesozoic Intrusive Complexes in the Southeastern Margin of the North China Block. Acta Petrologica Sinica, 27(4): 1131–1150 (in Chinese with English Abstract)

    Google Scholar 

  • Weber, M. B. I., Tarney, J., Kempton, P. D., et al., 2002. Crustal Make-up of the Northern Andes: Evidence Based on Deep Crustal Xenolith Suites, Mercaderes, SW Colombia. Tectonophysics, 345(1/2/3/4): 49–82. https://doi.org/10.1016/s0040-1951(01)00206.2

    Article  Google Scholar 

  • Wei, C., Powell, R., 2004. Calculated Phase Relations in High-Pressure Metapelites in the System NKFMASH (Na2O-K2O-FeO-MgO-Al2O3-SiO2-H2O). Journal of Petrology, 45(1): 183–202. https://doi.org/10.1093/petrology/egg0.5

    Article  Google Scholar 

  • White, R. W., Powell, R., Holland, T. J. B., 2001. Calculation of Partial Melting Equilibria in the System Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O (NCKFMASH). Journal of Metamorphic Geology, 19(2): 139–153. https://doi.org/10.1046/j.0263-4929.2000.00303.x

    Article  Google Scholar 

  • White, R. W., Powell, R., Holland, T. J. B., et al., 2014. New Mineral Activity-Composition Relations for Thermodynamic Calculations in Metapelitic Systems. Journal of Metamorphic Geology, 32(3): 261–286. https://doi.org/10.1111/jmg.120.1

    Article  Google Scholar 

  • Whitney, D. L., Evans, B. W., 2010. Abbreviations for Names of Rock-Forming Minerals. American Mineralogist, 95(1): 185–187. https://doi.org/10.2138/am.2010.3371

    Article  Google Scholar 

  • Wilde, S. A., Zhao, G. C., Sun, M., 2002. Development of the North China Craton during the Late Archean and Its Final Amalgamation at 1.8Ga: Some Speculations on Its Position within a Global Paleoproterozoic Supercontinent. Gondwana Research, 5(1): 85–94

    Article  Google Scholar 

  • Wu, F. Y., Zhang, Y. B., Yang, J. H., et al., 2008. Zircon U-Pb and Hf Isotopic Constraints on the Early Archean Crustal Evolution in Anshan of the North China Craton. Precambrian Research, 167(3/4): 339–362. https://doi.org/10.1016/j.precamres.2008.10.002

    Article  Google Scholar 

  • Xu, W. L., Gao, S., Wang, Q. H., et al., 2006. Mesozoic Crustal Thickening of the Eastern North China Craton: Evidence from Eclogite Xenoliths and Petrologic Implications. Geology, 34(9): 721–724. https://doi.org/10.1130/g22551.1

    Article  Google Scholar 

  • Xu, W. L., Gao, S., Yang, D. B., et al., 2009. Geochemistry of Eclogite Xenoliths in Mesozoic Adakitic Rocks from Xuzhou-Suzhou Area in Central China and Their Tectonic Implications. Lithos, 107(3/4): 269–280. https://doi.org/10.1016/j.lithos.2008.11.004

    Article  Google Scholar 

  • Xu, W. L., Wang, D. Y., Liu, X. C., et al., 2002. Discovery of Eclogite Inclusions and Its Geological Significance in Early Jurassic Intrusive Complex in Xuzhou-Northern Anhui, Eastern China. Chinese Science Bulletin, 47(14): 1212–1216. https://doi.org/10.1007/bf029076.2

    Google Scholar 

  • Yardley, B. W. D., 1989. An introduction to Metamorphic Petrology. Longman Group, Harlow. 49.51

    Google Scholar 

  • Ye, K., Cong, B. L., Ye, D. N., 2000. The Possible Subduction of Continental Material to Depths Greater than 200 km. Nature, 407(6805): 734–736. https://doi.org/10.1038.35037566

    Article  Google Scholar 

  • Zhai, M. G., Bian, A. G., Zhao, T. P., 2000. The Amalgamation of the Supercontinent of North China Craton at the End of Neo-Archaean and its Breakup during Late Palaeoproterozoic and Meso-Proterozoic. Science in China Series D: Earth Sciences, 43(S1): 219–232. https://doi.org/10.1007/bf029119.7

    Google Scholar 

  • Zhai, M. G., Liu, W. J., 2003. Palaeoproterozoic Tectonic History of the North China Craton: A Review. Precambrian Research, 122(1/2/3/4): 183–199. https://doi.org/10.1016/s0301-9268(02)00211.5

    Article  Google Scholar 

  • Zhai, M. G., Santosh, M., 2011. The Early Precambrian Odyssey of the North China Craton: A Synoptic Overview. Gondwana Research, 20(1): 6–25. https://doi.org/10.1016/j.gr.2011.02.005

    Article  Google Scholar 

  • Zhang, H. F., 2012. Destruction of Ancient Lower Crust through Magma Underplating beneath Jiaodong Peninsula, North China Craton: U-Pb and Hf Isotopic Evidence from Granulite Xenoliths. Gondwana Research, 21(1): 281–292. https://doi.org/10.1016/j.gr.2011.05.013

    Article  Google Scholar 

  • Zhang, J., Zhao, G. C., Li, S. Z., et al., 2009. Polyphase Deformation of the Fuping Complex, Trans-North China Orogen: Structures, SHRIMP U-Pb Zircon Ages and Tectonic Implications. Journal of Structural Geology, 31(2): 177–193. https://doi.org/10.1016/j.jsg.2008.11.008

    Article  Google Scholar 

  • Zhang, J., Zhao, G. C., Sun, M., et al., 2006. High-Pressure Mafic Granulites in the Trans-North China Orogen: Tectonic Significance and Age. Gondwana Research, 9(3): 349–362. https://doi.org/10.1016/j.gr.2005.10.005

    Article  Google Scholar 

  • Zhang, R. Y., Zhai, S. M., Fei, Y. W., et al., 2003. Titanium Solubility in Coexisting Garnet and Clinopyroxene at very High Pressure: The Significance of Exsolved Rutile in Garnet. Earth and Planetary Science Letters, 216(4): 591–601. https://doi.org/10.1016/s0012-821x(03)00551.x

    Article  Google Scholar 

  • Zhao, G. C., Cawood, P. A., Wilde, S. A., et al., 2000. Metamorphism of Basement Rocks in the Central Zone of the North China Craton: Implications for Paleoproterozoic Tectonic Evolution. Precambrian Research, 103(1/2): 55–88. https://doi.org/10.1016/s0301-9268(00)00076.0

    Article  Google Scholar 

  • Zhao, G. C., Sun, M., Wilde, S. A., et al., 2005. Late Arcean to Palaeoproterozoic Evolution of the North China Craton: Key Issues Revisited. Precambrian Research, 136(2): 177–202

    Article  Google Scholar 

  • Zhao, G. C., Wilde, S. A., Guo, J. H., et al., 2010. Single Zircon Grains Record Two Continental Collisional Events in the North China Craton. Precambrian Research, 177(3/4): 266–276

    Article  Google Scholar 

  • Zhao, G. C., Zhai, M. G., 2013. Lithotectonic Elements of Precambrian Basement in the North China Craton: Review and Tectonic Implications. Gondwana Research, 23(4): 1207–1240. https://doi.org/10.1016/j.gr.2012.08.016

    Article  Google Scholar 

  • Zheng, J. P., Griffin, W. L., OʼReilly, S. Y., et al., 2004. 3.6Ga Lower Crust in Central China: New Evidence on the Assembly of the North China Craton. Geology, 32(3): 229–232. https://doi.org/10.1130/g20133.1

    Article  Google Scholar 

  • Zheng, J. P., Sun, M., Lu, F. X., et al., 2003. Mesozoic Lower Crustal Xenoliths and Their Significance in Lithospheric Evolution beneath the Sino-Korean Craton. Tectonophysics, 361(1/2): 37–60. https://doi.org/10.1016/s0040-1951(02)00537.1

    Article  Google Scholar 

  • Zong, K. Q., Liu, Y. S., Liu, X. M., et al., 2006. Geochemical Study on Microelements in Suit of Single Minerals in Eclogites from CCSD Main Hole in Deep of 100–1 100 m. Acta Petrologica Sinica, 27(7): 1891–1904 (in Chinese with English Abstract)

    Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (No. 41773020), the National Basic Research Program of China (No. 2015CB856104) and the PhD Foundation of the Ministry of Education of China (No. 20133402130008). This paper is dedicated to the celebration of Prof. Zhendong Youʼs 90th birthday. Thanks also go to Yonghong Shi and Juan Wang for their help in electron microprobe analysis, and Liangpeng Deng for valuable discussions. Constructive comments and suggestions from two anonymous reviewers have greatly improved the final presentation of the paper. The final publication is available at Springer via https://doi.org/10.1007/s12583-018-0849-6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yican Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, J., Liu, Y. & Yang, Y. Phase Equilibria Modeling and P-T Evolution of the Mafic Lower-Crustal Xenoliths from the Southeastern Margin of the North China Craton. J. Earth Sci. 29, 1236–1253 (2018). https://doi.org/10.1007/s12583-018-0849-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-018-0849-6

Key Words

Navigation