Skip to main content
Log in

Coulomb Stress Evolution History as Implication on the Pattern of Strong Earthquakes along the Xianshuihe-Xiaojiang Fault System, China

  • Seismology
  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

Coulomb stress accumulation and releasing history and its relationship with the occurrence of strong historical earthquakes could deepen our understanding of the occurrence pattern of strong earthquakes and hence its seismic potential in future. The sinistral strike-slip Xianshuihe- Xiaojiang fault zone (XXFS) is one of the most dangerous fault zones in China, extending 1 500-km-long from the central Tibetan Plateau to the Red River fault zone. There are 35 M≥6.5 historical earthquakes occurred since 1327, hence it is an ideal site for studying the Coulomb stress evolution history and its relationship with the occurrences of strong earthquakes. In this study, we evaluated the Coulomb stress change history along the XXFS by synthesizing fault geometry, GPS data and historical earthquakes. Coulomb stress change history also revealed different patterns of historical earthquakes on different segments of the XXFS, such as characteristic recurrence intervals along the Salaha-Moxi fault and super-cycles along the Xianshuihe fault. Based on the occurrence pattern of past historical earthquakes and current Coulomb stress field obtained in this study, we suggest positive ΔCFS and hence high seismic potential along the Salaha-Moxi fault and the Anninghe fault.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Allen, C. R., Luo, Z., Qian, H., et al., 1991. Field Study of a Highly Active Fault Zone: The Xianshuihe Fault of Southwestern China. Geological Society of America Bulletin, 103(9): 1178–1199

    Article  Google Scholar 

  • Anderson, J. G., Luco, J. E., 1983. Consequences of Slip Rate Constraints on Earthquake Occurrence Relations. Bulletin of the Seismological Society of America, 73(2): 471–496

    Google Scholar 

  • Avouac, J. P., Tapponnier, P., 1993. Kinematic Model of Active Deformation in Central Asia. Geophysical Research Letters, 20(10): 895–898. https://doi.org/10.1029/93gl00128

    Article  Google Scholar 

  • Bakun, W. H., Lindh, A. G., 1985. The Parkfield, California, Earthquake Prediction Experiment. Science, 229(4714): 619–624. https://doi.org/10.1126/science.229.4714.619

    Article  Google Scholar 

  • Brune, J. N., 1968. Seismic Moment, Seismicity, and Rate of Slip along Major Fault Zones. Journal of Geophysical Research, 73(2): 777–784. https://doi.org/10.1029/jb073i002p00777

    Article  Google Scholar 

  • Earthquake Disaster Prevention Department of China Earthquake Administration (EDPDCEA), 1995. Catalogue of Chinese Historical Strong Earthquakes (23rd Century BC-AD 1911). Seismological Press, Beijing. 514 (in Chinese)

    Google Scholar 

  • Earthquake Disaster Prevention Department of China Earthquake Administration (EDPDCEA), 1999. Catalogue of Chinese Modern Earthquake (1912 AD-1990 AD Ms≥ 4.7). China Science and Technology Press, Beijing. 637 (in Chinese)

    Google Scholar 

  • England, P., Molnar, P., 1990. Right-Lateral Shear and Rotation as the Explanation for Strike-Slip Faulting in Eastern Tibet. Nature, 344(6262): 140–142. https://doi.org/10.1038/344140a0

    Article  Google Scholar 

  • Gan, W. J., Zhang, P. Z., Shen, Z. K., et al., 2007. Present-Day Crustal Motion within the Tibetan Plateau Inferred from GPS Measurements. Journal of Geophysical Research, 112(B8): B08416. https://doi.org/10.1029/2005jb004120

    Article  Google Scholar 

  • Grant, L. B., Sieh, K., 1994. Paleoseismic Evidence of Clustered Earthquakes on the San Andreas Fault in the Carrizo Plain, California. Journal of Geophysical Research, 99(B4): 6819–6841. https://doi.org/10.1029/94jb00125

    Article  Google Scholar 

  • Harris, R. A., 1998. Introduction to Special Section: Stress Triggers, Stress Shadows, and Implications for Seismic Hazard. Journal of Geophysical Research: Solid Earth, 103(B10): 24347–24358. https://doi.org/10.1029/98jb01576

    Article  Google Scholar 

  • He, H. L., Ikeda, Y., 2007. Faulting on the Anninghe Fault Zone, Southwest China in Late Quaternary and Its Movement Model. Acta Seismologica Sinica, 20(5): 571–583. https://doi.org/10.1007/s11589-007-0571-4

    Article  Google Scholar 

  • He, H. L., Ikeda, Y., He, Y. L., et al., 2008. Newly-Generated Daliangshan Fault Zone—Shortcutting on the Central Section of Xianshuihe-Xiaojiang Fault System. Science in China Series D: Earth Sciences, 51(9): 1248–1258. https://doi.org/10.1007/s11430-008-0094-4

    Article  Google Scholar 

  • He, H. L., Oguchi, T., 2008. Late Quaternary Activity of the Zemuhe and Xiaojiang Faults in Southwest China from Geomorphological Mapping. Geomorphology, 96(1/2): 62–85. https://doi.org/10.1016/j.geomorph.2007.07.009

    Article  Google Scholar 

  • He, H. L., Song, F. M., Li, C. Y., 1999. Topographic Survey of Micro Faulted Landform and Estimation of Strike Slip Rate for the Zemuhe Fault, Sichuan Province. Seismology and Geology, 21(4): 361–369 (in Chinese with English Abstract)

    Google Scholar 

  • He, J. K., Xia, W. H., Lu, S. J., et al., 2011. Three-Dimensional Finite Element Modeling of Stress Evolution around the Xiaojiang Fault System in the Southeastern Tibetan Plateau during the Past ~500Years. Tectonophysics, 507(1/2/3/4): 70–85. https://doi.org/10.1016/j.tecto.2011.05.009

    Article  Google Scholar 

  • Heim, A., 1934. Earthquake Region of Taofu. Geological Society of America Bulletin, 45(6): 1035–1050. https://doi.org/10.1130/gsab-45-1035

    Article  Google Scholar 

  • Jiang, W. L., Zhang, J. F., Tian, T., et al., 2012. Crustal Structure of Chuan-Dian Region Derived from Gravity Data and Its Tectonic Implications. Physics of the Earth and Planetary Interiors, 212/213: 76–87. https://doi.org/10.1016/j.pepi.2012.07.001

    Article  Google Scholar 

  • Kanamori, H., 1983. Magnitude Scale and Quantification of Earthquakes. Tectonophysics, 93(3/4): 185–199. https://doi.org/10.1016/0040-1951(83)90273-1

    Article  Google Scholar 

  • King, G. C. P., Stein, R. S., Lin, J., 1994. Static Stress Changes and the Triggering of Earthquakes. Bulletin of the Seismological Society of America, 84(3): 935–953

    Google Scholar 

  • Li, A., Shi, F., Yang, X. P., et al., 2012. Recurrence of Paleoearthquakes on the Southeastern Segment of the Ganzi-Yushu Fault, Central Tibetan Plateau. Science China Earth Sciences, 56(2): 165–172. https://doi.org/10.1007/s11430-012-4540-y

    Article  Google Scholar 

  • Li, L., Chen, Q. F., Niu, F. L., et al., 2013. Estimates of Deep Slip Rate along the Xiaojiang Fault with Repeating Microearthquake Data. Chinese Journal of Geophysics, 56(10): 3373–3384 (in Chinese with English Abstract)

    Google Scholar 

  • Lin, A., Jia, D., Rao, G., et al., 2011. Recurrent Morphogenic Earthquakes in the Past Millennium along the Strike-Slip Yushu Fault, Central Tibetan Plateau. Bulletin of the Seismological Society of America, 101(6): 2755–2764. https://doi.org/10.1785/0120100274

    Article  Google Scholar 

  • Lin, J., Stein, R. S., 2004. Stress Triggering in Thrust and Subduction Earthquakes and Stress Interaction between the Southern San Andreas and nearby Thrust and Strike-Slip Faults. Journal of Geophysical Research: Solid Earth, 109(B2): B02303. https://doi.org/10.1029/2003jb002607

    Article  Google Scholar 

  • Liu, C., Xu, L., Chen, Y., 2010. IGP-CEA Moment Tensor Solution. [2018-3-8]. http://www.csi.ac.cn/manage/html/4028861611c5c2ba0111c5c558b00001/_c ontent/10_04/17/1271488288058.html

    Google Scholar 

  • Liu, Q. Y., van der Hilst, R. D., Li, Y., et al., 2014. Eastward Expansion of the Tibetan Plateau by Crustal Flow and Strain Partitioning across Faults. Nature Geoscience, 7(5): 361–365. https://doi.org/10.1038/ngeo2130

    Article  Google Scholar 

  • Matsuda, T., Ota, Y., Ando, M., et al., 1978. Fault Mechanism and Recurrence Time of Major Earthquakes in Southern Kanto District, Japan, as Deduced from Coastal Terrace Data. Geological Society of America Bulletin, 89(11): 1610–1618. https://doi.org/10.1130/0016-7606(1978)89<1610:fmarto>2.0.co;2

    Article  Google Scholar 

  • Nishenko, S. P., Buland, R., 1987. A Generic Recurrence Interval Distribution for Earthquake Forecasting. Geological Society of America Bulletin, 77(4): 1382–1399

    Google Scholar 

  • Qin, X. H., Tan, C. X., Chen, Q. C., et al., 2014. Crustal Stress State and Seismic Hazard along Southwest Segment of the Longmenshan Thrust Belt after Wenchuan Earthquake. Journal of Earth Science, 25(4): 676–688. https://doi.org/10.1007/s12583-014-0457-z

    Article  Google Scholar 

  • Ran, Y., Cheng, J., Gong, H., et al., 2008. Late Quaternary Geomorphic Deformation and Displacement Rates of the Anninghe Fault around Zimakua. Seismology and Geology, 30(1): 86–98 (in Chinese with English Abstract)

    Google Scholar 

  • Ren, Z. K., 2013. Geometry and Deformation Features of the most Recent Co-Seismic Surface Ruptures along the Xiaojiang Fault and Its Tectonic Implications for the Tibetan Plateau. Journal of Asian Earth Sciences, 77: 21–30. https://doi.org/10.1016/j.jseaes.2013.08.016

    Article  Google Scholar 

  • Ren, Z. K., 2014. Late Quaternary Deformation Features along the Anninghe Fault on the Eastern Margin of the Tibetan Plateau. Journal of Asian Earth Sciences, 85: 53–65. https://doi.org/10.1016/j.jseaes.2014.01.025

    Article  Google Scholar 

  • Ren, Z. K., Lin, A. M., 2010. Deformation Characteristics of Co-Seismic Surface Ruptures Produced by the 1850M 7.5 Xichang Earthquake on the Eastern Margin of the Tibetan Plateau. Journal of Asian Earth Sciences, 38(1/2): 1–13. https://doi.org/10.1016/j.jseaes.2009.12.008

    Article  Google Scholar 

  • Ren, Z. K., Lin, A. M., Rao, G., 2010. Late Pleistocene–Holocene Activity of the Zemuhe Fault on the Southeastern Margin of the Tibetan Plateau. Tectonophysics, 495(3/4): 324–336. https://doi.org/10.1016/j.tecto.2010.09.039

    Article  Google Scholar 

  • Ren, Z. K., Zhang, Z. Q., Chen, T., et al., 2015. Clustering of Offsets on the Haiyuan Fault and their Relationship to Paleoearthquakes. Geological Society of America Bulletin, 128(1/2): 3–18. https://doi.org/10.1130/b31155.1

    Google Scholar 

  • Roger, F., Calassou, S., Lancelot, J., et al., 1995. Miocene Emplacement and Deformation of the Konga Shan Granite (Xianshui he Fault Zone, West Sichuan, China): Geodynamic Implications. Earth and Planetary Science Letters, 130(1/2/3/4): 201–216. https://doi.org/10.1016/0012-821x(94)00252-t

    Article  Google Scholar 

  • Schlagenhauf, A., Manighetti, I., Benedetti, L., et al., 2011. Earthquake Supercycles in Central Italy, Inferred from 36Cl Exposure Dating. Earth and Planetary Science Letters, 307(3/4): 487–500. https://doi.org/10.1016/j.epsl.2011.05.022

    Article  Google Scholar 

  • Schwartz, D. P., Coppersmith, K. J., 1984. Fault Behavior and Characteristic Earthquakes: Examples from the Wasatch and San Andreas Fault Zones. Journal of Geophysical Research: Solid Earth, 89(B7): 5681–5698. https://doi.org/10.1029/jb089ib07p05681

    Google Scholar 

  • Searle, M. P., Elliott, J. R., Phillips, R. J., et al., 2011. Crustal-Lithospheric Structure and Continental Extrusion of Tibet. Journal of the Geological Society, 168(3): 633–672. https://doi.org/10.1144/0016-76492010-139

    Article  Google Scholar 

  • Shan, B., Xiong, X., Wang, R. J., et al., 2013. Coulomb Stress Evolution along Xianshuihe-Xiaojiang Fault System since 1713 and Its Interaction with Wenchuan Earthquake, May 12, 2008. Earth and Planetary Science Letters, 377/378: 199–210. https://doi.org/10.1016/j.epsl.2013.06.044

    Article  Google Scholar 

  • Shao, Z. G., Xu, J., Ma, H. S., et al., 2016. Coulomb Stress Evolution over the Past 200Years and Seismic Hazard along the Xianshuihe Fault Zone of Sichuan, China. Tectonophysics, 670: 48–65. https://doi.org/10.13039/501100001809

    Article  Google Scholar 

  • Shen, Z. K., Lü, J. N., Wang, M., et al., 2005. Contemporary Crustal Deformation around the Southeast Borderland of the Tibetan Plateau. Journal of Geophysical Research: Solid Earth, 110(B11): B11409. https://doi.org/10.1029/2004jb003421

    Article  Google Scholar 

  • Shi, F., He, H. L., Densmore, A. L., et al., 2016. Active Tectonics of the Ganzi-Yushu Fault in the Southeastern Tibetan Plateau. Tectonophysics, 676: 112–124. https://doi.org/10.1016/j.tecto.2016.03.036

    Article  Google Scholar 

  • Shimazaki, K., Nakata, T., 1980. Time-Predictable Recurrence Model for Large Earthquakes. Geophysical Research Letters, 7(4): 279–282. https://doi.org/10.1029/gl007i004p00279

    Article  Google Scholar 

  • Sieh, K., 1996. The Repetition of Large-Earthquake Ruptures. Proceedings of the National Academy of Sciences, 93(9): 3764–3771. https://doi.org/10.1073/pnas.93.9.3764

    Article  Google Scholar 

  • Sieh, K., Natawidjaja, D. H., Meltzner, A. J., et al., 2008. Earthquake Supercycles Inferred from Sea-Level Changes Recorded in the Corals of West Sumatra. Science, 322(5908): 1674–1678. https://doi.org/10.1126/science.1163589

    Article  Google Scholar 

  • Sieh, K., Stuiver, M., Brillinger, D., 1989. A more Precise Chronology of Earthquakes Produced by the San Andreas Fault in Southern California. Journal of Geophysical Research, 94(B1): 603–623. https://doi.org/10.1029/jb094ib01p00603

    Article  Google Scholar 

  • Stein, R. S., Barka, A. A., Dieterich, J. H., 1997. Progressive Failure on the North Anatolian Fault since 1939 by Earthquake Stress Triggering. Geophysical Journal International, 128(3): 594–604. https://doi.org/10.1111/j.1365-246x.1997.tb05321.x

    Article  Google Scholar 

  • Stein, S., Geller, R. J., Liu, M., 2012. Why Earthquake Hazard Maps often Fail and what to do about it. Tectonophysics, 562/563: 1–25. https://doi.org/10.1016/j.tecto.2012.06.047

    Article  Google Scholar 

  • Tang, R., Wen, D., Deng, T., et al., 1976. A Preliminary Study on the Characteristics of the Ground Fracture during the Luhuo M=7.9 Earthquake, 1973 and the Origin of the Earthquake. Acta Geophysica Sinica, 19(1): 18–27 (in Chinese with English Abstract)

    Google Scholar 

  • Thatcher, W., 1989. Earthquake Recurrence and Risk Assessment in Circum-Pacific Seismic Gaps. Nature, 341(6241): 432–434. https://doi.org/10.1038/341432a0

    Article  Google Scholar 

  • Toda, S., Lin, J., Meghraoui, M., et al., 2008. 12 May 2008 M=7.9 Wenchuan, China, Earthquake Calculated to Increase Failure Stress and Seismicity Rate on Three Major Fault Systems. Geophysical Research Letters, 35(17): L17305. https://doi.org/10.1029/2008gl034903

    Article  Google Scholar 

  • Toda, S., Stein, R. S., 2002. Response of the San Andreas Fault to the 1983 Coalinga-Nuñez Earthquakes: An Application of Interaction-Based Probabilities for Parkfield. Journal of Geophysical Research, 107(B6): ESE 6-1–ESE 6-16. https://doi.org/10.1029/2001jb000172

    Google Scholar 

  • Toda, S., Stein, R. S., Richards-Dinger, K., et al., 2005. Forecasting the Evolution of Seismicity in Southern California: Animations Built on Earthquake Stress Transfer. Journal of Geophysical Research, 110(B5): B05S16. https://doi.org/10.1029/2004jb003415

    Article  Google Scholar 

  • Toda, S., Stein, R. S., Sevilgen, V., et al., 2011. Coulomb 3.3 Graphic-Rich Deformation and Stress-Change Software for Earthquake, Tectonic, and Volcano Research and Teaching—User Guide. U.S. Geological Survey Open-File Report 2011–106063. U.S. Geological Survey, [S.l.]

    Google Scholar 

  • Wallace, R. E., 1970. Earthquake Recurrence Intervals on the San Andreas Fault. Geological Society of America Bulletin, 81(10): 2875–2890. https://doi.org/10.1130/0016-7606(1970)81[2875:eriots]2.0.co;2

    Article  Google Scholar 

  • Wang, C. Y., Han, W. B., Wu, J. P., et al., 2007. Crustal Structure beneath the Eastern Margin of the Tibetan Plateau and Its Tectonic Implications. Journal of Geophysical Research, 112(B7): 3672–3672. https://doi.org/10.1029/2005jb003873

    Google Scholar 

  • Wang, C. Y., Lou, H., Wang, X. L., et al., 2009. Crustal Structure in Xiaojiang Fault Zone and Its Vicinity. Earthquake Science, 22(4): 347–356. https://doi.org/10.1007/s11589-009-0347-0

    Article  Google Scholar 

  • Wang, D., Mori, J., 2012. The 2010 Qinghai, China, Earthquake: A Moderate Earthquake with Supershear Rupture. Bulletin of the Seismological Society of America, 102(1): 301–308. https://doi.org/10.1785/0120110034

    Article  Google Scholar 

  • Wang, E., Burchfiel, B. C., 2000. Late Cenozoic to Holocene Deformation in Southwestern Sichuan and Adjacent Yunnan, China, and Its Role in Formation of the Southeastern Part of the Tibetan Plateau. Geological Society of America Bulletin, 112(3): 413–423. https://doi.org/10.1130/0016-7606(2000)112<413:lcthdi>2.0.co;2

    Article  Google Scholar 

  • Wang, E., Burchfiel, B. C., Royden, L. H., et al., 1998. Late Cenozoic Xianshuihe-Xiaojiang, Red River, and Dali Fault Systems of Southwestern Sichuan and Central Yunnan, China. Special Paper of the Geological Society of America, 327: 1–108. https://doi.org/10.1130/0-8137-2327-2.1

    Google Scholar 

  • Wang, S. F., Fang, X. M., Zheng, D. W., et al., 2009. Initiation of Slip along the Xianshuihe Fault Zone, Eastern Tibet, Constrained by K/Ar and Fission-Track Ages. International Geology Review, 51(12): 1121–1131. https://doi.org/10.1080/00206810902945132

    Article  Google Scholar 

  • Wang, Y. Z., Wang, M., Shen, Z. K., et al., 2013. Inter-Seismic Deformation Field of the Ganzi-Yushu Fault before the 2010Mw 6.9 Yushu Earthquake. Tectonophysics, 584: 138–143. https://doi.org/10.1016/j.tecto.2012.03.026

    Article  Google Scholar 

  • Wells, D. L., Coppersmith, K. J., 1994. New Empirical Relationships among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement. Bulletin of the Seismological Society of America, 84(4): 974–1002

    Google Scholar 

  • Wen, X. Z., Ma, S. L., Xu, X. W., et al., 2008. Historical Pattern and Behavior of Earthquake Ruptures along the Eastern Boundary of the Sichuan-Yunnan Faulted-Block, Southwestern China. Physics of the Earth and Planetary Interiors, 168(1/2): 16–36. https://doi.org/10.1016/j.pepi.2008.04.013

    Article  Google Scholar 

  • Wen, X. Z., Xu, X. W., Zheng, R., et al., 2003. Average Slip-Rate and Recent Large Earthquake Ruptures along the Garzê-Yushu Fault. Science in China Series D: Earth Sciences, 46(2): 276–288

    Google Scholar 

  • Wesnousky, S. G., 1994. The Gutenberg-Richter or Characteristic Earthquake Distribution, Which is it? Bulletin of the Seismological Society of America, 84(6): 1940–1959

    Google Scholar 

  • Xu, L. L., Rondenay, S., van der Hilst, R. D., 2007. Structure of the Crust beneath the Southeastern Tibetan Plateau from Teleseismic Receiver Functions. Physics of the Earth and Planetary Interiors, 165(3/4): 176–193. https://doi.org/10.1016/j.pepi.2007.09.002

    Article  Google Scholar 

  • Yan, B., Lin, A. M., 2015. Systematic Deflection and Offset of the Yangtze River Drainage System along the Strike-Slip Ganzi-Yushu-Xianshuihe Fault Zone, Tibetan Plateau. Journal of Geodynamics, 87: 13–25. https://doi.org/10.13039/501100001700

    Article  Google Scholar 

  • Yan, B., Lin, A. M., 2017. Holocene Activity and Paleoseismicity of the Selaha Fault, Southeastern Segment of the Strike-Slip Xianshuihe Fault Zone, Tibetan Plateau. Tectonophysics, 694(2): 302–318. https://doi.org/10.13039/501100001700

    Article  Google Scholar 

  • Yan, J.-Q., Shi, Z.-L., Huan, W.-L., et al., 1980. The Characteristics of Fault Plane Solutions of Strong Aftershocks. Acta Sedimentologica Sinica, 2(4): 395–403 (in Chinese with English Abstract)

    Google Scholar 

  • Yao, H. J., Beghein, C., van der Hilst, R. D., 2008. Surface Wave Array Tomography in SE Tibet from Ambient Seismic Noise and Two-Station Analysis-II. Crustal and Upper-Mantle Structure. Geophysical Journal International, 173(1): 205–219. https://doi.org/10.1111/j.1365-246x.2007.03696.x

    Article  Google Scholar 

  • Youngs, R. R., Coppersmith, K. J., 1985. Implications of Fault Slip Rates and Earthquake Recurrence Models to Probabilistic Seismic Hazard Estimates. Bulletin of the Seismological Society of America, 75(4): 939–964

    Google Scholar 

  • Zhang, P. Z., 2013. A Review on Active Tectonics and Deep Crustal Processes of the Western Sichuan Region, Eastern Margin of the Tibetan Plateau. Tectonophysics, 584: 7–22. https://doi.org/10.1016/j.tecto.2012.02.021

    Article  Google Scholar 

  • Zhang, P. Z., Shen, Z. K., Wang, M., et al., 2004. Continuous Deformation of the Tibetan Plateau from Global Positioning System Data. Geology, 32(9): 809–812. https://doi.org/10.1130/g20554.1

    Article  Google Scholar 

  • Zhang, Z. J., Deng, Y. F., Teng, J. W., et al., 2011. An Overview of the Crustal Structure of the Tibetan Plateau after 35 Years of Deep Seismic Soundings. Journal of Asian Earth Sciences, 40(4): 977–989. https://doi.org/10.1016/j.jseaes.2010.03.010

    Article  Google Scholar 

  • Zhou, H., Liu, H.-L., Kanamori, H., 1983. Source Processes of Large Earthquakes along the Xianshuihe Fault in Southwestern China. Bulletin of the Seismological Society of America, 73(2): 537–551

    Google Scholar 

  • Zhou, R. J., He, Y. L., Huang, Z. Z., et al., 2001a. The Slip Rate and Strong Earthquake Recurrence Interval on the Qianning-Kangding Segment of the Xianshuihe Fault Zone. Acta Seismologica Sinica, 14(3): 263–273. https://doi.org/10.1007/s11589-001-0004-8

    Article  Google Scholar 

  • Zhou, R. J., He, Y. L., Yang, T., et al., 2001b. Slip Rate and Strong Earthquake Rupture on the Moxi-Mianning Segment along the Xianshuihe-Anninghe Fault Zone. Earthquake Research in China, 17(3): 253–262 (in Chinese with English Abstract)

    Google Scholar 

  • Zhou, R. J., Li, X. G., Huang, Z. Z., et al., 2003. Average Slip Rate of Daliang Mountain Fault Zone in Sichuan in Late Quaternary Period. Journal of Seismological Research, 26(2): 191–196 (in Chinese with English Abstract)

    Google Scholar 

  • Zhou, R. J., Li, Y., Liang, M. J., et al., 2014. Determination of Mean Recurrence Interval of Large Earthquakes on the Garzê-Yushu Fault (Dengke Segment) on the Eastern Margin of the Qinghai-Tibetan Plateau. Quaternary International, 333: 179–187. https://doi.org/10.1016/j.quaint.2013.11.010

    Article  Google Scholar 

  • Zhou, R. J., Ma, S. H., Cai, C. X., 1996. Late Quaternary Active Features of the Ganzi-Yushu Fault Zone. Earthquake Research in China, 12(3): 250–260 (in Chinese with English Abstract)

    Google Scholar 

  • Zhou, R. J., Wen, X. Z., Cai, C. X., et al., 1997. Recent Earthquakes and Assessment of Seismic Tendency on the Ganzi-Yushu Fault Zone. Seismology and Geology, 19(2): 115–124 (in Chinese with English Abstract)

    Google Scholar 

  • Zhu, H., Wen, X. Z., 2010. Static Stress Triggering Effects Related with MS 8.0 Wenchuan Earthquake. Journal of Earth Science, 21(1): 32–41. https://doi.org/10.1007/s12583-010-0001-8

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Prof. Dong Jia, Drs. Gang Rao and Maomao Wang for discussions. This work was supported by the Science Project awarded to A. Lin from the Ministry of Education of China (No. 23253002), the Culture, Sports, Science, and Technology of Japan, and China Postdoctoral Science Foundation (No. 2016M591817) to Bing Yan. The final publication is available at Springer via https://doi.org/10.1007/s12583-018-0840-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, B., Toda, S. & Lin, A. Coulomb Stress Evolution History as Implication on the Pattern of Strong Earthquakes along the Xianshuihe-Xiaojiang Fault System, China. J. Earth Sci. 29, 427–440 (2018). https://doi.org/10.1007/s12583-018-0840-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-018-0840-2

Key words

Navigation