Journal of Earth Science

, Volume 29, Issue 1, pp 57–77 | Cite as

Early Cretaceous Post-Collisional Collapse of the Yidun Terrane: Geochronological and Geochemical Constraints from Calc-alkaline to Alkaline Basalts in Xiqiu Area, Southwest China

  • Xutuo Li
  • Danping Yan
  • Liang Qiu
Mineralogy and Petrogeochemistry


Several Cretaceous Carlin-like or hydrothermal gold deposits along the Garze-Litang suture zone and Early Cretaceous hydrothermal copper mineralization along the southeastern margin of the Songpan-Garze fold belt were presumed to have a magmatic heat source. However, no actual coeval magmatic events nearby were discovered. Here, we report zircon SIMS U-Pb age, whole-rock geochemical and Sr-Nd isotopic data of the Xiqiu basalts in the southern end of the Yidun terrane, eastern Tibetan Plateau. New zircon U-Pb ages yield weighted mean 206Pb/238U age of 117.7±1.6 Ma. The basalts are classified as calc-alkaline to alkaline and have relatively high MgO (4.77 wt.%–10.84 wt.%) and Mg number values (Mg#=(100×Mg/(Mg+Fe2+)); 45.35–67.28) and positive εNd(t) (t=118 Ma) values (+1.86 to +3.2), suggesting a OIB-like mantle source that is consistent with the normalized patterns of trace elements and rare earth elements (REEs). Geochemical data suggest that the primary basaltic magma was generated by low degree partial melting of a peridotite-dominated mantle source with a minor component of garnet-eclogite or pyroxenite and experienced olivine+clinopyroxene dominated fractional crystallization. The primary melt compositions calculated from the high MgO samples, in turn, suggest that the Xiqiu basalts were generated at 1.6–2.9 GPa with abnormally hot mantle potential temperatures from 1 465 to 1 540 ºC. The melting temperatures are similar to the abnormally hot mantle underneath the Colorado Plateau and hotter than the mid-ocean range basalt (MORB) mantle and normal intra-continental mantle. Combined with previous studies, the Cretaceous Xiqiu basalts allow us to reconstruct a tectonic and geodynamic evolutionary model responsible for the Late Jurassic to Late Cretaceous geological records (magmatism, ore deposits and enhanced exhumation) in the Yidun terrane and southern Songpan-Garze fold belt.

Key words

Early Cretaceous mantle thermal state basalt Yidun terrane tectonic and geodynamic model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This study was supported by the National Natural Science Foundation of China (Nos. 41372212, 41672216, and 41702207). We thank Drs. Zhiguo Cheng and Dong Liu for helpful discussion. We gratefully acknowledged the helpful and constructive reviews by two anonymous reviewers and effective editorial handling by the editors. The final publication is available at Springer via

Supplementary material

12583_2018_825_MOESM1_ESM.pdf (51 kb)
Supplementary material, approximately 51.2 KB.

References Cited

  1. Albarède, F., 1992. How Deep do Common Basaltic Magmas form and Differentiate?. Journal of Geophysical Research, 97(B7): 10997–11009. Scholar
  2. Aldanmaz, E., Pearce, J. A., Thirlwall, M. F., et al., 2000. Petrogenetic Evolution of Late Cenozoic, Post-Collision Volcanism in Western Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 102(1/2): 67–95. Scholar
  3. Allen, P. A., Allen, J. R., 2005. Basin Analysis: Principles and Applications (Second Edition). Blackwell Publishing, Oxford. 549Google Scholar
  4. Beattie, P., 1993. Olivine-Melt and Orthopyroxene-Melt Equilibria. Contributions to Mineralogy and Petrology, 115(1): 103–111. Scholar
  5. Bown, J. W., White, R. S., 1995. Effect of Finite Extension Rate on Melt Generation at Rifted Continental Margins. Journal of Geophysical Research: Solid Earth, 100(B9): 18011–18029. Scholar
  6. Burchfiel, B. C., Chen, Z. L., 2013. Tectonics of the Southeastern Tibetan Plateau and Its Adjacent Foreland. Geological Society of America Memoirs, 210: 1–164CrossRefGoogle Scholar
  7. Cao, W. T., Yan, D. P., Qiu, L., et al., 2015. Structural Style and Metamorphic Conditions of the Jinshajiang Metamorphic Belt: Nature of the Paleo-Jinshajiang Orogenic Belt in the Eastern Tibetan Plateau. Journal of Asian Earth Sciences, 113: 748–765. Scholar
  8. Castillo, P. R., 2008. Origin of the Adakite-High-Nb Basalt Association and Its Implications for Postsubduction Magmatism in Baja California, Mexico. Geological Society of America Bulletin, 120(3/4): 451–462. Scholar
  9. Castillo, P. R., Rigby, S. J., Solidum, R. U., 2007. Origin of High Field Strength Element Enrichment in Volcanic Arcs: Geochemical Evidence from the Sulu Arc, Southern Philippines. Lithos, 97(3/4): 271–288. Scholar
  10. Cen, T., Li, W. X., Wang, X. C., et al., 2016. Petrogenesis of Early Jurassic Basalts in Southern Jiangxi Province, South China: Implications for the Thermal State of the Mesozoic Mantle beneath South China. Lithos, 256/257: 311–330. Scholar
  11. Chen, B., Wang, K., Liu, W., et al., 1987. Geotectonics of the Nujiang-Lancangjiang-Jinshajiang Region. Geological Publishing House, Beijing. 204 (in Chinese)Google Scholar
  12. Chen, M. H., Deng, J., Chen, D. Q., 2011. Origin of the Ore-Forming Matter from the Liwu Copper Orefield in Jiulong, Sichuan. Sedimentary Geology and Tethyan Geology, 31(1): 89–93 (in Chinese with English Abstract)Google Scholar
  13. Deng, B., Liu, S. G., Li, Z. W., et al., 2012. Late Cretaceous Tectonic Change of the Eastern Margin of the Tibetan Plateau—Results from Multisystem Thermochronology. Journal of the Geological Society of India, 80(2): 241–254. Scholar
  14. Deng, J., Wang, Q. F., Li, G. J., 2017. Tectonic Evolution, Superimposed Orogeny, and Composite Metallogenic System in China. Gondwana Research, 50: 216–266. Scholar
  15. Deng, J., Wang, Q. F., Li, G. J., et al., 2014. Tethys Tectonic Evolution and Its Bearing on the Distribution of Important Mineral Deposits in the Sanjiang Region, SW China. Gondwana Research, 26(2): 419–437. Scholar
  16. Ding, L., Yang, D., Cai, F. L., et al., 2013. Provenance Analysis of the Mesozoic Hoh-Xil-Songpan-Ganzi Turbidites in Northern Tibet: Implications for the Tectonic Evolution of the Eastern Paleo-Tethys Ocean. Tectonics, 32(1): 34–48. Scholar
  17. Du, D. D., Qu, X. M., Wang, G. H., et al., 2011. Bidirectional Subduction of the Middle Tethys Oceanic Basin in the West Segment of Bangonghu-Nujiang Suture, Tibet: Evidence from Zircon U-Pb LAICPMS Dating and Petrogeochemistry of Arc Granites. Acta Petrologica Sinica, 27: 1993–2002 (in Chinese with English Abstract)Google Scholar
  18. Ellam, R. M., 1992. Lithospheric Thickness as a Control on Basalt Geochemistry. Geology, 20(2): 153.<0153:ltaaco>;2CrossRefGoogle Scholar
  19. Falloon, T. J., Danyushevsky, L. V., 2000. Melting of Refractory Mantle at 1.5, 2 and 2.5 GPa under Anhydrous and H2O-Undersaturated Conditions: Implications for the Petrogenesis of High-Ca Boninites and the Influence of Subduction Components on Mantle Melting. Journal of Petrology, 41(2): 257–283. Scholar
  20. Griffin, W. L., Begg, G. C., O’Reilly, S. Y., 2013. Continental-Root Control on the Genesis of Magmatic Ore Deposits. Nature Geoscience, 6(11): 905–910. Scholar
  21. Gutscher, M. A., Maury, R., Eissen, J. P., et al., 2000. Can Slab Melting be Caused by Flat Subduction?. Geology, 28(6): 535.<535:csmbcb>;2CrossRefGoogle Scholar
  22. Haase, K. M., 1996. The Relationship between the Age of the Lithosphere and the Composition of Oceanic Magmas: Constraints on Partial Melting, Mantle Sources and the Thermal Structure of the Plates. Earth and Planetary Science Letters, 144(1/2): 75–92. Scholar
  23. Hastie, A. R., Kerr, A. C., Pearce, J. A., et al., 2007. Classification of Altered Volcanic Island Arc Rocks Using Immobile Trace Elements: Development of the Th-Co Discrimination Diagram. Journal of Petrology, 48(12): 2341–2357. Scholar
  24. Hastie, A. R., Mitchell, S. F., Kerr, A. C., et al., 2011. Geochemistry of Rare High-Nb Basalt Lavas: Are They Derived from a Mantle Wedge Metasomatised by Slab Melts?. Geochimica et Cosmochimica Acta, 75(17): 5049–5072. Scholar
  25. Herzberg, C., Asimow, P. D., Arndt, N., et al., 2007. Temperatures in Ambient Mantle and Plumes: Constraints from Basalts, Picrites, and Komatiites. Geochemistry, Geophysics, Geosystems, 8(2): 1–34. Scholar
  26. Herzberg, C., O’Hara, M. J., 2002. Plume-Associated Ultramafic Magmas of Phanerozoic Age. Journal of Petrology, 43(10): 1857–1883CrossRefGoogle Scholar
  27. Hou, Z. Q., 1993. Tectono-Magmatic Evolution of the Yidun Island-Arc and Geodynamic Setting of Kuroko-Type Sulfide Deposits in Sanjiang Region, SW China. Resource Geology, 17: 336–350Google Scholar
  28. Hou, Z. Q., Yang, Y. Q., Wang, H. P., et al., 2003. Collision-Orogenic Progress and Mineralization System of Yidun Arc. Geological Publishing House, Beijing. 335 (in Chinese)Google Scholar
  29. Hronsky, J. M. A., Groves, D. I., Loucks, R. R., et al., 2012. A Unified Model for Gold Mineralisation in Accretionary Orogens and Implications for Regional-Scale Exploration Targeting Methods. Mineralium Deposita, 47(4): 339–358. Scholar
  30. Hu, R. Z., Wen, H. J., Su, W. C., et al., 2014. Some Advances in Ore Deposit Geochemistry in Last Decade. Bulletin of Mineralogy, Petrology and Geochemistry, 33(2): 128–144 (in Chinese with English Abstract)Google Scholar
  31. Huan, W. J., Li, N., Yuan, W. M., et al., 2013. Fission Track Constrain on Mineralization Time and Tectonic Events in Ganzi-Litang Gold Belt, Tibet Plateau. Acta Petrologica Sinica, 29(4): 1338–1346 (in Chinese with English Abstract)Google Scholar
  32. Huan, W. J., Yuan, W. M., Li, N., 2011. Study on the Mineral Electron Microprobe Evidence of the Formation Conditions and Fission Track of Gold Deposits in Garze-Litang Gold Belt, Western Sichuan Province. Geosciences, 25: 261–270 (in Chinese with English Abstract)Google Scholar
  33. Jahn, B. M., Wu, F. Y., Lo, C. H., et al., 1999. Crust-Mantle Interaction Induced by Deep Subduction of the Continental Crust: Geochemical and Sr-Nd Isotopic Evidence from Post-Collisional Mafic-Ultramafic Intrusions of the Northern Dabie Complex, Central China. Chemical Geology, 157(1/2): 119–146. Scholar
  34. Jian, P., Liu, D. Y., Kröner, A., et al., 2009. Devonian to Permian Plate Tectonic Cycle of the Paleo-Tethys Orogen in Southwest China (II): Insights from Zircon Ages of Ophiolites, Arc/Back-Arc Assemblages and Within-Plate Igneous Rocks and Generation of the Emeishan CFB Province. Lithos, 113(3/4): 767–784. Scholar
  35. Kapp, P., DeCelles, P. G., Gehrels, G. E., et al., 2007. Geological Records of the Lhasa-Qiangtang and Indo-Asian Collisions in the Nima Area of Central Tibet. Geological Society of America Bulletin, 119(7/8): 917–933. Scholar
  36. Kapp, P., Yin, A., Harrison, T. M., et al., 2005. Cretaceous–Tertiary Shortening, Basin Development, and Volcanism in Central Tibet. Geological Society of America Bulletin, 117(7): 865. Scholar
  37. Katz, R. F., Spiegelman, M., Langmuir, C. H., 2003. A New Parameterization of Hydrous Mantle Melting. Geochemistry, Geophysics, Geosystems, 4(9): 1–19. Scholar
  38. Kelley, K. A., Plank, T., Grove, T. L., et al., 2006. Mantle Melting as a Function of Water Content beneath Back-Arc Basins. Journal of Geophysical Research, 111(B9): 1–27. Scholar
  39. Kepezhinskas, P., McDermott, F., Defant, M. J., et al., 1997. Trace Element and Sr-Nd-Pb Isotopic Constraints on a Three-Component Model of Kamchatka Arc Petrogenesis. Geochimica et Cosmochimica Acta, 61(3): 577–600. Scholar
  40. Lai, Q. Z., Ding, L., Wang, H. W., et al., 2007. Constraining the Stepwise Migration of the Eastern Tibetan Plateau Margin by Apatite Fission Track Thermochronology. Science in China Series D: Earth Sciences, 50(2): 172–183. Scholar
  41. Langmuir, C. H., Klein, E. M., Plank, T., 1992. Petrological Systematics of Mid-Ocean Ridge Basalts: Constraints on Melt Generation beneath Ocean Ridges. In: Mantle Flow and Melt Generation at Mid-Ocean Ridges. American Geophysical Union, Geophysical Monograph, 71: 183–280Google Scholar
  42. Le Roux, V., Lee, C. T. A., Turner, S. J., 2010. Zn/Fe Systematics in Mafic and Ultramafic Systems: Implications for Detecting Major Element Heterogeneities in the Earth’s Mantle. Geochimica et Cosmochimica Acta, 74(9): 2779–2796. Scholar
  43. Lee, C. T. A., Luffi, P., Plank, T., et al., 2009. Constraints on the Depths and Temperatures of Basaltic Magma Generation on Earth and Other Terrestrial Planets Using New Thermobarometers for Mafic Magmas. Earth and Planetary Science Letters, 279(1/2): 20–33. Scholar
  44. Li, D. P., Chen, Y. L., Luo, Z. H., et al., 2009. Zircon SHRIMP U-Pb Dating and Neoproterozoic Metamorphism of Kangding and Yuanmou Intrusive Complexes, Sichuan and Yunnan. Journal of Earth Science, 20(6): 897–908. Scholar
  45. Li, H. L., Zhang, Y. Q., Zhang, C. H., et al., 2015. Middle Jurassic Syn-Kinematic Magmatism, Anatexis and Metamorphism in the Zheduo-Gonggar Massif, Implication for the Deformation of the Xianshuihe Fault Zone, East Tibet. Journal of Asian Earth Sciences, 107: 35–52. Scholar
  46. Li, J. K., Li, W. C., Wang, D. H., et al., 2007. Re-Os Dating for Ore Forming Event in the Late of Yanshan Epoch and Research of Ore-Forming Regularity in Zhongdian Arc. Acta Petrologica Sinica, 23: 2415–2422 (in Chinese with English Abstract)Google Scholar
  47. Li, T. Z., Dai, Y. P., Ma, G. T., et al., 2016a. SHRIMP zircon U-Pb Dating of the Wulaxi Granite in the Western Margin of the Yangtze Block and Its Geological Significance. Bulletin of Mineralogy, Petrology and Geochemistry, 35(4): 744–749 (in Chinese with English Abstract)Google Scholar
  48. Li, T. Z., Zhou, Q., Zhang, H. H., et al., 2016b. Ore Geology and Molybdenite Re-Os Dating of the Wulaxi Tungsten Deposit in Western Sichuan. Geological Journal of China Universities, 22(3): 423–430 (in Chinese with English Abstract)Google Scholar
  49. Li, X. H., Liu, Y., Li, Q. L., et al., 2009. Precise Determination of Phanerozoic Zircon Pb/Pb Age by Multicollector SIMS without External Standardization. Geochemistry, Geophysics, Geosystems, 10(4): Q04010. Scholar
  50. Li, X. H., Tang, G. Q., Gong, B., et al., 2013. Qinghu Zircon: A Working Reference for Microbeam Analysis of U-Pb Age and Hf and O Isotopes. Chinese Science Bulletin, 58(36): 4647–4654. Scholar
  51. Li, Y. J., Wei, J. H., Chen, H. Y., et al., 2014. Petrogenesis of the Xiasai Early Cretaceous A-Type Granite from the Yidun Island Arc Belt, SW China: Constraints from Zircon U-Pb Age, Geochemistry and Hf Isotope. Geotectonica et Metallogenia, 38(4): 939–954 (in Chinese with English Abstract)Google Scholar
  52. Liang, Q., 2000. Determination of Trace Elements in Granites by Inductively Coupled Plasma Mass Spectrometry. Talanta, 51(3): 507–513. Scholar
  53. Liu, S. S., Fan, W. Y., Nie, F., et al., 2015. Geological Characteristics and Ore-Controlling Factors Analysis of Suoluogou Gold Deposit, Muli County, Sichuan Province. Gold, 6(36): 98–13 (in Chinese with English Abstract)Google Scholar
  54. Liu, Y. S., Gao, S., Kelemen, P. B., et al., 2008. Recycled Crust Controls Contrasting Source Compositions of Mesozoic and Cenozoic Basalts in the North China Craton. Geochimica et Cosmochimica Acta, 72(9): 2349–2376. Scholar
  55. Ludwig, K. R., 2003. User’s Manual for Isoplot/EX, Version 3.70. A Geochronological Toolkit for Microsoft Excel, Special Publication 4. Berkeley Geochronology Center, Berkeley. 76Google Scholar
  56. Luo, H. C., Kan, Z. Z., Yang, H., et al., 2012. Mineralogy and Metamorphism of the Changqiang Metamorphic Dome. Journal of Sichuan Geology, 32(2): 133–138 (in Chinese with English Abstract)Google Scholar
  57. Ma, G. T., Wang, M. J., Yao, P., et al., 2009. 40Ar-39Ar Dating of Biotite from the Heiniudong Copper Deposit in Jiulong County, Sichuan Province, and Its Geological Significance. Acta Geologica Sinica, 83(5): 673–679 (in Chinese with English Abstract)Google Scholar
  58. McKenzie, D., Bickle, M. J., 1988. The Volume and Composition of Melt Generated by Extension of the Lithosphere. Journal of Petrology, 29(3): 625–679. Scholar
  59. McKenzie, D., O’Nions, R. K., 1991. Partial Melt Distributions from Inversion of Rare Earth Element Concentrations. Journal of Petrology, 32(5): 1021–1091. Scholar
  60. Moucha, R., Forte, A. M., Rowley, D. B., et al., 2008. Mantle Convection and the Recent Evolution of the Colorado Plateau and the Rio Grande Rift Valley. Geology, 36(6): 439. Scholar
  61. Moyen, J. F., 2009. High Sr/Y and La/Yb Ratios: The Meaning of the “Adakitic Signature”. Lithos, 112(3/4): 556–574CrossRefGoogle Scholar
  62. Nie, F., Fan, W. Y., Liu, S. S., et al., 2015. Structural Characteristics of the Suoluogou Gold Deposit in Muli County, West Sichuan Province. Acta Geologica Sinica—English Edition, 89(5): 1773–1774. Scholar
  63. Pan, G. T., Li, X. Z., Wang, L. Q., et al., 2002. Preliminary Division of Tectonic Units of the Qinghai-Tibet Plateau and Its Adjacent Regions. Geological Bulletin of China, 21: 701–707 (in Chinese with English Abstract)Google Scholar
  64. Pan, G. T., Wang, L. Q., Li, R. S., et al., 2012. Tectonic Evolution of the Qinghai-Tibet Plateau. Journal of Asian Earth Sciences, 53: 3–14. Scholar
  65. Pearce, J. A., 1996. A User’s Guide to Basalt Discrimination Diagrams. In: Wyman, D. A., ed., Trace Element Geochemistry of Volcanic Rocks: Applications of Massive Sulphide Exploration. Geological Association of Canada, Short Course Notes, 12: 79–113Google Scholar
  66. Pearce, J. A., 2008. Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust. Lithos, 100(1/2/3/4): 14–48. Scholar
  67. Plank, T., Langmuir, C. H., 1998. The Chemical Composition of Subducting Sediment and Its Consequences for the Crust and Mantle. Chemical Geology, 145(3/4): 325–394. Scholar
  68. Putirka, K. D., Mikaelian, H., Ryerson, F., et al., 2003. New Clinopyroxene-Liquid Thermobarometers for Mafic, Evolved, and Volatile-Bearing Lava Compositions, with Applications to Lavas from Tibet and the Snake River Plain, Idaho. American Mineralogist, 88(10): 1542–1554. Scholar
  69. Putirka, K. D., Perfit, M., Ryerson, F. J., et al., 2007. Ambient and Excess Mantle Temperatures, Olivine Thermometry, and Active vs. Passive Upwelling. Chemical Geology, 241(3/4): 177–206CrossRefGoogle Scholar
  70. Qu, X. M., Hou, Z. Q., Tang, S. H., 2003. Age of Intraplate Volcanism in the Back-Arc Area of Yidun Island Arc and Its Significance. Petrol. Mineral., 22: 131–137 (in Chinese with English Abstract)Google Scholar
  71. Reid, A. J., Fowler, A. P., Phillips, D., et al., 2005a. Thermochronology of the Yidun Arc, Central Eastern Tibetan Plateau: Constraints from 40Ar/39Ar K-Feldspar and Apatite Fission Track Data. Journal of Asian Earth Sciences, 25(6): 915–935. Scholar
  72. Reid, A. J., Wilson, C. J. L., Liu, S., 2005b. Structural Evidence for the Permo-Triassic Tectonic Evolution of the Yidun Arc, Eastern Tibetan Plateau. Journal of Structural Geology, 27(1): 119–137. Scholar
  73. Reid, A. J., Wilson, C. J. L., Liu, S., et al., 2007. Mesozoic Plutons of the Yidun Arc, SW China: U/Pb Geochronology and Hf Isotopic Signature. Ore Geology Reviews, 31(1/2/3/4): 88–106. Scholar
  74. Roger, F., Jolivet, M., Cattin, R., et al., 2011. Mesozoic–Cenozoic Tectonothermal Evolution of the Eastern Part of the Tibetan Plateau (Songpan-Garze, Longmen Shan Area): Insights from Thermochronological Data and Simple Thermal Modelling. Geological Society, London, Special Publications, 353(1): 9–25. Scholar
  75. Roger, F., Jolivet, M., Malavieille, J., 2010. The Tectonic Evolution of the Songpan-Garze (North Tibet) and Adjacent Areas from Proterozoic to Present: A Synthesis. Journal of Asian Earth Sciences, 39(4): 254–269. Scholar
  76. Roy, M., Jordan, T. H., Pederson, J., 2009. Colorado Plateau Magmatism and Uplift by Warming of Heterogeneous Lithosphere. Nature, 459(7249): 978–982. Scholar
  77. Shellnutt, J. G., Zhou, M. F., Yan, D. P., et al., 2008. Longevity of the Permian Emeishan Mantle Plume (SW China): 1 Ma, 8 Ma or 18 Ma?. Geological Magazine, 145(3): 373–388. Scholar
  78. Sláma, J., Košler, J., Condon, D. J., et al., 2008. Plešovice Zircon—A New Natural Reference Material for U-Pb and Hf Isotopic Microanalysis. Chemical Geology, 249(1/2): 1–35. Scholar
  79. Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313–345. Scholar
  80. Taylor, S. R., Mclennan, S. M., 1985. The Continental Crust: Its Composition and Evolution, an Examination of the Geochemical Record Preserved in Sedimentary Rocks. Blackwell Science Publishing, Oxford. 312Google Scholar
  81. Tian, Y. T., Kohn, B. P., Gleadow, A. W., et al., 2014. A Thermochronological Perspective on the Morphotectonic Evolution of the Southeastern Tibetan Plateau. Journal of Geophysical Research: Solid Earth, 119(1): 676–698. Scholar
  82. Tschegg, C., Ntaflos, T., Akinin, V. V., 2011. Polybaric Petrogenesis of Neogene Alkaline Magmas in an Extensional Tectonic Environment: Viliga Volcanic Field, Northeast Russia. Lithos, 122(1/2): 13–24. Scholar
  83. Wan, C. H., 2015. Mesozoic Granitoids of the Southern Part, Songpan-Garze Fold Belt: Petrology, Geochemical Composition and Petrogenesis: [Dissertation]. Chengdu University of Technology, Chengdu. 53 (in Chinese with English Abstract)Google Scholar
  84. Wang, B. Q., Wang, W., Chen, W. T., et al., 2013a. Constraints of Detrital Zircon U-Pb Ages and Hf Isotopes on the Provenance of the Triassic Yidun Group and Tectonic Evolution of the Yidun Terrane, Eastern Tibet. Sedimentary Geology, 289: 74–98. Scholar
  85. Wang, B. Q., Zhou, M. F., Chen, W. T., et al., 2013b. Petrogenesis and Tectonic Implications of the Triassic Volcanic Rocks in the Northern Yidun Terrane, Eastern Tibet. Lithos, 175/176: 285–301. Scholar
  86. Wang, B. Q., Zhou, M. F., Li, J. W., et al., 2011. Late Triassic Porphyritic Intrusions and Associated Volcanic Rocks from the Shangri-La Region, Yidun Terrane, Eastern Tibetan Plateau: Adakitic Magmatism and Porphyry Copper Mineralization. Lithos, 127(1/2): 24–38. Scholar
  87. Wang, C. Y., Zhou, M. F., Keays, R. R., 2006. Geochemical Constraints on the Origin of the Permian Baimazhai Mafic-Ultramafic Intrusion, SW China. Contributions to Mineralogy and Petrology, 152(3): 309–321. Scholar
  88. Wang, C. Y., Zhou, M. F., Qi, L., 2007. Permian Flood Basalts and Mafic Intrusions in the Jinping (SW China)-Song Da (Northern Vietnam) District: Mantle Sources, Crustal Contamination and Sulfide Segregation. Chemical Geology, 243(3/4): 317–343. Scholar
  89. Wang, Q. W., Wang, K. M., Kan, Z. Z., 2008. Granites and Related Mineralization in Western Sichuan. Geological Publishing House, Beijing. 303 (in Chinese)Google Scholar
  90. Wang, S. W., Liao, Z. W., Sun, X. M., et al., 2014. The Yanshanian Lithospheric Evolution in the Kangdian Area: Restriction from SHRIMP Zircons U-Pb Age and Geochemistry of Mafic Dykes in Dongchuan, Yunan Province, SW China. Acta Geologica Snica, 88(3): 299–317 (in Chinese with English Abstract)Google Scholar
  91. Wang, X. C., Li, X. H., Li, Z. X., et al., 2010. The Willouran Basic Province of South Australia: Its Relation to the Guibei Large Igneous Province in South China and the Breakup of Rodinia. Lithos, 119(3/4): 569–584. Scholar
  92. Wang, X. C., Li, Z. X., Li, X. H., et al., 2012. Temperature, Pressure, and Composition of the Mantle Source Region of Late Cenozoic Basalts in Hainan Island, SE Asia: A Consequence of a Young Thermal Mantle Plume Close to Subduction Zones?. Journal of Petrology, 53(1): 177–233. Scholar
  93. Wang, X. C., Wilde, S. A., Li, Q. L., et al., 2015. Continental Flood Basalts Derived from the Hydrous Mantle Transition Zone. Nature Communications, 6: 7700. Scholar
  94. Wang, X. S., Bi, X. W., Leng, C. B., et al., 2014a. Geochronology and Geochemistry of Late Cretaceous Igneous Intrusions and Mo-Cu-(W) Mineralization in the Southern Yidun Arc, SW China: Implications for Metallogenesis and Geodynamic Setting. Ore Geology Reviews, 61: 73–95. Scholar
  95. Wang, X. S., Hu, R. Z., Bi, X. W., et al., 2014b. Petrogenesis of Late Cretaceous I-Type Granites in the Southern Yidun Terrane: New Constraints on the Late Mesozoic Tectonic Evolution of the Eastern Tibetan Plateau. Lithos, 208/209: 202–219. Scholar
  96. Wiedenbeck, M., Allé, P., Corfu, F., et al., 1995. Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and REE Analyses. Geostandards and Geoanalytical Research, 19(1): 1–23. Scholar
  97. Wilson, M., 1989. Igneous Petrogenesis. Unwin Hyman, London. 466CrossRefGoogle Scholar
  98. Wu, T., Xiao, L., Gao, R., et al., 2014. Petrogenesis and Tectonic Setting of the Queershan Composite Granitic Pluton, Eastern Tibetan Plateau: Constraints from Geochronology, Geochemistry and Hf Isotope Data. Science China Earth Sciences, 57(11): 2712–2725. Scholar
  99. Wu, T., Xiao, L., Ma, C. Q., 2016. U-Pb Geochronology of Detrital and Inherited Zircons in the Yidun Arc Belt, Eastern Tibet Plateau and Its Tectonic Implications. Journal of Earth Science, 27(3): 461–473. Scholar
  100. Xu, C., Huang, Z. L., Qi, L., et al., 2007. Geochemistry of Cretaceous Granites from Mianning in the Panxi Region, Sichuan Province, Southwestern China: Implications for Their Generation. Journal of Asian Earth Sciences, 29(5/6): 737–750. Scholar
  101. Xu, G. Q., Kamp, P. J. J., 2000. Tectonics and Denudation Adjacent to the Xianshuihe Fault, Eastern Tibetan Plateau: Constraints from Fission Track Thermochronology. Journal of Geophysical Research: Solid Earth, 105(B8): 19231–19251. Scholar
  102. Xu, Y. G., Chung, S. L., Jahn, B. M., et al., 2001. Petrologic and Geochemical Constraints on the Petrogenesis of Permian–Triassic Emeishan Flood Basalts in Southwestern China. Lithos, 58(3/4): 145–168CrossRefGoogle Scholar
  103. Yan, D. P., Zhou, M. F., Li, S. B., et al., 2011. Structural and Geochronological Constraints on the Mesozoic–Cenozoic Tectonic Evolution of the Longmen Shan Thrust Belt, Eastern Tibetan Plateau. Tectonics, 30(6): TC6005. Scholar
  104. Yan, D. P., Zhou, M. F., Song, H. L., et al., 2003. Structural Style and Tectonic Significance of the Jianglang Dome in the Eastern Margin of the Tibetan Plateau, China. Journal of Structural Geology, 25(5): 765–779. Scholar
  105. Yang, L. Q., Deng, J., Dilek, Y., et al., 2016. Melt Source and Evolution of I-Type Granitoids in the SE Tibetan Plateau: Late Cretaceous Magmatism and Mineralization Driven by Collision-Induced Transtensional Tectonics. Lithos, 245: 258–273. Scholar
  106. Yang, L. Q., Deng, J., Gao, X., et al., 2017. Timing of Formation and Origin of the Tongchanggou Porphyry-Skarn Deposit: Implications for Late Cretaceous Mo-Cu Metallogenesis in the Southern Yidun Terrane, SE Tibetan Plateau. Ore Geology Reviews, 81: 1015–1032. Scholar
  107. Yang, T. N., Ding, Y., Zhang, H. R., et al., 2014. Two-Phase Subduction and Subsequent Collision Defines the Paleotethyan Tectonics of the Southeastern Tibetan Plateau: Evidence from Zircon U-Pb Dating, Geochemistry, and Structural Geology of the Sanjiang Orogenic Belt, Southwest China. Geological Society of America Bulletin, 126(11/12): 1654–1682. Scholar
  108. Yang, T. N., Hou, Z. Q., Wang, Y., et al., 2012. Late Paleozoic to Early Mesozoic Tectonic Evolution of Northeast Tibet: Evidence from the Triassic Composite Western Jinsha-Garze-Litang Suture. Tectonics, 31(4): TC4004. Scholar
  109. Yao, P., Wang, M. J., Li, J. Z., et al., 2008. Isotopic Tracing of the Liwu-Type Cu-Rich Deposits and Its Ore-Forming Geological Significance. Acta Geologica Sinica, 29(6): 691–696 (in Chinese with English Abstract)Google Scholar
  110. Zhang, K. J., Zhang, Y. X., Tang, X. C., et al., 2012. Late Mesozoic Tectonic Evolution and Growth of the Tibetan Plateau Prior to the Indo-Asian Collision. Earth-Science Reviews, 114(3/4): 236–249CrossRefGoogle Scholar
  111. Zhang, Y., Wang, Q. F., Zhang, J., et al., 2012. Geological Characteristics and Genesis of Ajialongwa Gold Deposit in Ganzi-Litang Suture Zone, West Sichuan. Acta Petrologica Sinica, 28(2): 691–701 (in Chinese with English Abstract)Google Scholar
  112. Zhang, Z. C., Wang, F. S., Hao, Y. L., et al., 2004. Geochemistry of the Picrites and Associated Basalts from the Emeishan Large Igneous Basalt Province and Constraints on Their Source Region. Acta Geologica Sinica, 78: 171–180 (in Chinese with English Abstract)Google Scholar
  113. Zheng, M. H., Yang, Z. X., Gu, X. X., 1995. Metallogenic Environment and Genetic Model of Erze Karst-Type Gold Deposit of Muli, Sichuan Province. Scientia Geologica Sinica, 30: 363–373 (in Chinese with English Abstract)Google Scholar
  114. Zhou, J. Y., Tan, H. Q., Gong, D. X., et al., 2013. Zircon LA-ICP-MS U-Pb Dating and Hf Isotopic Composition of Xinhuoshan Granite in the Core of Jianglang Dome, Western Sichuan, China. J. Mineral. Petrol., 33(4): 42–52 (in Chinese with English Abstract)Google Scholar
  115. Zhou, M. F., Robinson, P. T., Wang, C. Y., et al., 2012. Heterogeneous Mantle Source and Magma Differentiation of Quaternary Arc-Like Volcanic Rocks from Tengchong, SE Margin of the Tibetan Plateau. Contributions to Mineralogy and Petrology, 163(5): 841–860. Scholar
  116. Zhou, M. F., Yan, D. P., Kennedy, A. K., et al., 2002. SHRIMP U-Pb Zircon Geochronological and Geochemical Evidence for Neoproterozoic Arc-Magmatism along the Western Margin of the Yangtze Block, South China. Earth and Planetary Science Letters, 196(1/2): 51–67. Scholar
  117. Zhou, M. F., Yan, D. P., Wang, C. L., et al., 2006a. Subduction-Related Origin of the 750 Ma Xuelongbao Adakitic Complex (Sichuan Province, China): Implications for the Tectonic Setting of the Giant Neoproterozoic Magmatic Event in South China. Earth and Planetary Science Letters, 248(1/2): 286–300. Scholar
  118. Zhou, M. F., Ma, Y., Yan, D. P., et al., 2006b. The Yanbian Terrane (Southern Sichuan Province, SW China): A Neoproterozoic Arc Assemblage in the Western Margin of the Yangtze Block. Precambrian Research, 144(1/2): 19–38. Scholar
  119. Zhu, D. C., Li, S. M., Cawood, P. A., et al., 2016. Assembly of the Lhasa and Qiangtang Terranes in Central Tibet by Divergent Double Subduction. Lithos, 245: 7–17. Scholar
  120. Zi, J. W., Cawood, P. A., Fan, W. M., et al., 2013. Late Permian–Triassic Magmatic Evolution in the Jinshajiang Orogenic Belt, SW China and Implications for Orogenic Processes Following Closure of the Paleo-Tethys. American Journal of Science, 313(2): 81–112. Scholar
  121. Zu, B., Xue, C. J., Chi, G. X., et al., 2016. Geology, Geochronology and Geochemistry of Granitic Intrusions and the Related Ores at the Hongshan Cu-Polymetallic Deposit: Insights into the Late Cretaceous Post-Collisional Porphyry-Related Mineralization Systems in the Southern Yidun Arc, SW China. Ore Geology Reviews, 77: 25–42. Scholar
  122. Zu, B., Xue, C. J., Zhao, Y., et al., 2015. Late Cretaceous Metallogeny in the Zhongdian Area: Constraints from Re-Os Dating of Molybdenite and Pyrrhotite from the Hongshan Cu Deposit, Yunnan, China. Ore Geology Reviews, 64: 1–12. Scholar

Copyright information

© China University of Geosciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Geological Processes and Mineral ResourcesChina University of GeosciencesBeijingChina

Personalised recommendations