Skip to main content
Log in

Early Cretaceous Post-Collisional Collapse of the Yidun Terrane: Geochronological and Geochemical Constraints from Calc-alkaline to Alkaline Basalts in Xiqiu Area, Southwest China

  • Mineralogy and Petrogeochemistry
  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

Several Cretaceous Carlin-like or hydrothermal gold deposits along the Garze-Litang suture zone and Early Cretaceous hydrothermal copper mineralization along the southeastern margin of the Songpan-Garze fold belt were presumed to have a magmatic heat source. However, no actual coeval magmatic events nearby were discovered. Here, we report zircon SIMS U-Pb age, whole-rock geochemical and Sr-Nd isotopic data of the Xiqiu basalts in the southern end of the Yidun terrane, eastern Tibetan Plateau. New zircon U-Pb ages yield weighted mean 206Pb/238U age of 117.7±1.6 Ma. The basalts are classified as calc-alkaline to alkaline and have relatively high MgO (4.77 wt.%–10.84 wt.%) and Mg number values (Mg#=(100×Mg/(Mg+Fe2+)); 45.35–67.28) and positive εNd(t) (t=118 Ma) values (+1.86 to +3.2), suggesting a OIB-like mantle source that is consistent with the normalized patterns of trace elements and rare earth elements (REEs). Geochemical data suggest that the primary basaltic magma was generated by low degree partial melting of a peridotite-dominated mantle source with a minor component of garnet-eclogite or pyroxenite and experienced olivine+clinopyroxene dominated fractional crystallization. The primary melt compositions calculated from the high MgO samples, in turn, suggest that the Xiqiu basalts were generated at 1.6–2.9 GPa with abnormally hot mantle potential temperatures from 1 465 to 1 540 ºC. The melting temperatures are similar to the abnormally hot mantle underneath the Colorado Plateau and hotter than the mid-ocean range basalt (MORB) mantle and normal intra-continental mantle. Combined with previous studies, the Cretaceous Xiqiu basalts allow us to reconstruct a tectonic and geodynamic evolutionary model responsible for the Late Jurassic to Late Cretaceous geological records (magmatism, ore deposits and enhanced exhumation) in the Yidun terrane and southern Songpan-Garze fold belt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Albarède, F., 1992. How Deep do Common Basaltic Magmas form and Differentiate?. Journal of Geophysical Research, 97(B7): 10997–11009. https://doi.org/10.1029/91jb02927

    Article  Google Scholar 

  • Aldanmaz, E., Pearce, J. A., Thirlwall, M. F., et al., 2000. Petrogenetic Evolution of Late Cenozoic, Post-Collision Volcanism in Western Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 102(1/2): 67–95. https://doi.org/10.1016/s0377-0273(00)00182-7

    Article  Google Scholar 

  • Allen, P. A., Allen, J. R., 2005. Basin Analysis: Principles and Applications (Second Edition). Blackwell Publishing, Oxford. 549

    Google Scholar 

  • Beattie, P., 1993. Olivine-Melt and Orthopyroxene-Melt Equilibria. Contributions to Mineralogy and Petrology, 115(1): 103–111. https://doi.org/10.1007/bf00712982

    Article  Google Scholar 

  • Bown, J. W., White, R. S., 1995. Effect of Finite Extension Rate on Melt Generation at Rifted Continental Margins. Journal of Geophysical Research: Solid Earth, 100(B9): 18011–18029. https://doi.org/10.1029/94jb01478

    Article  Google Scholar 

  • Burchfiel, B. C., Chen, Z. L., 2013. Tectonics of the Southeastern Tibetan Plateau and Its Adjacent Foreland. Geological Society of America Memoirs, 210: 1–164

    Article  Google Scholar 

  • Cao, W. T., Yan, D. P., Qiu, L., et al., 2015. Structural Style and Metamorphic Conditions of the Jinshajiang Metamorphic Belt: Nature of the Paleo-Jinshajiang Orogenic Belt in the Eastern Tibetan Plateau. Journal of Asian Earth Sciences, 113: 748–765. https://doi.org/10.13039/501100001809

    Article  Google Scholar 

  • Castillo, P. R., 2008. Origin of the Adakite-High-Nb Basalt Association and Its Implications for Postsubduction Magmatism in Baja California, Mexico. Geological Society of America Bulletin, 120(3/4): 451–462. https://doi.org/10.1130/b26166.1

    Article  Google Scholar 

  • Castillo, P. R., Rigby, S. J., Solidum, R. U., 2007. Origin of High Field Strength Element Enrichment in Volcanic Arcs: Geochemical Evidence from the Sulu Arc, Southern Philippines. Lithos, 97(3/4): 271–288. https://doi.org/10.1016/j.lithos.2006.12.012

    Article  Google Scholar 

  • Cen, T., Li, W. X., Wang, X. C., et al., 2016. Petrogenesis of Early Jurassic Basalts in Southern Jiangxi Province, South China: Implications for the Thermal State of the Mesozoic Mantle beneath South China. Lithos, 256/257: 311–330. https://doi.org/10.13039/501100001809

    Article  Google Scholar 

  • Chen, B., Wang, K., Liu, W., et al., 1987. Geotectonics of the Nujiang-Lancangjiang-Jinshajiang Region. Geological Publishing House, Beijing. 204 (in Chinese)

    Google Scholar 

  • Chen, M. H., Deng, J., Chen, D. Q., 2011. Origin of the Ore-Forming Matter from the Liwu Copper Orefield in Jiulong, Sichuan. Sedimentary Geology and Tethyan Geology, 31(1): 89–93 (in Chinese with English Abstract)

    Google Scholar 

  • Deng, B., Liu, S. G., Li, Z. W., et al., 2012. Late Cretaceous Tectonic Change of the Eastern Margin of the Tibetan Plateau—Results from Multisystem Thermochronology. Journal of the Geological Society of India, 80(2): 241–254. https://doi.org/10.1007/s12594-012-0134-8

    Article  Google Scholar 

  • Deng, J., Wang, Q. F., Li, G. J., 2017. Tectonic Evolution, Superimposed Orogeny, and Composite Metallogenic System in China. Gondwana Research, 50: 216–266. https://doi.org/10.13039/501100001809

    Article  Google Scholar 

  • Deng, J., Wang, Q. F., Li, G. J., et al., 2014. Tethys Tectonic Evolution and Its Bearing on the Distribution of Important Mineral Deposits in the Sanjiang Region, SW China. Gondwana Research, 26(2): 419–437. https://doi.org/10.1016/j.gr.2013.08.002

    Article  Google Scholar 

  • Ding, L., Yang, D., Cai, F. L., et al., 2013. Provenance Analysis of the Mesozoic Hoh-Xil-Songpan-Ganzi Turbidites in Northern Tibet: Implications for the Tectonic Evolution of the Eastern Paleo-Tethys Ocean. Tectonics, 32(1): 34–48. https://doi.org/10.1002/tect.20013

    Article  Google Scholar 

  • Du, D. D., Qu, X. M., Wang, G. H., et al., 2011. Bidirectional Subduction of the Middle Tethys Oceanic Basin in the West Segment of Bangonghu-Nujiang Suture, Tibet: Evidence from Zircon U-Pb LAICPMS Dating and Petrogeochemistry of Arc Granites. Acta Petrologica Sinica, 27: 1993–2002 (in Chinese with English Abstract)

    Google Scholar 

  • Ellam, R. M., 1992. Lithospheric Thickness as a Control on Basalt Geochemistry. Geology, 20(2): 153. https://doi.org/10.1130/0091-7613(1992)020<0153:ltaaco>2.3.co;2

    Article  Google Scholar 

  • Falloon, T. J., Danyushevsky, L. V., 2000. Melting of Refractory Mantle at 1.5, 2 and 2.5 GPa under Anhydrous and H2O-Undersaturated Conditions: Implications for the Petrogenesis of High-Ca Boninites and the Influence of Subduction Components on Mantle Melting. Journal of Petrology, 41(2): 257–283. https://doi.org/10.1093/petrology/41.2.257

    Article  Google Scholar 

  • Griffin, W. L., Begg, G. C., O’Reilly, S. Y., 2013. Continental-Root Control on the Genesis of Magmatic Ore Deposits. Nature Geoscience, 6(11): 905–910. https://doi.org/10.1038/ngeo1954

    Article  Google Scholar 

  • Gutscher, M. A., Maury, R., Eissen, J. P., et al., 2000. Can Slab Melting be Caused by Flat Subduction?. Geology, 28(6): 535. https://doi.org/10.1130/0091-7613(2000)28<535:csmbcb>2.0.co;2

    Article  Google Scholar 

  • Haase, K. M., 1996. The Relationship between the Age of the Lithosphere and the Composition of Oceanic Magmas: Constraints on Partial Melting, Mantle Sources and the Thermal Structure of the Plates. Earth and Planetary Science Letters, 144(1/2): 75–92. https://doi.org/10.1016/0012-821x(96)00145-8

    Article  Google Scholar 

  • Hastie, A. R., Kerr, A. C., Pearce, J. A., et al., 2007. Classification of Altered Volcanic Island Arc Rocks Using Immobile Trace Elements: Development of the Th-Co Discrimination Diagram. Journal of Petrology, 48(12): 2341–2357. https://doi.org/10.1093/petrology/egm062

    Article  Google Scholar 

  • Hastie, A. R., Mitchell, S. F., Kerr, A. C., et al., 2011. Geochemistry of Rare High-Nb Basalt Lavas: Are They Derived from a Mantle Wedge Metasomatised by Slab Melts?. Geochimica et Cosmochimica Acta, 75(17): 5049–5072. https://doi.org/10.1016/j.gca.2011.06.018

    Article  Google Scholar 

  • Herzberg, C., Asimow, P. D., Arndt, N., et al., 2007. Temperatures in Ambient Mantle and Plumes: Constraints from Basalts, Picrites, and Komatiites. Geochemistry, Geophysics, Geosystems, 8(2): 1–34. https://doi.org/10.1029/2006gc001390

    Article  Google Scholar 

  • Herzberg, C., O’Hara, M. J., 2002. Plume-Associated Ultramafic Magmas of Phanerozoic Age. Journal of Petrology, 43(10): 1857–1883

    Article  Google Scholar 

  • Hou, Z. Q., 1993. Tectono-Magmatic Evolution of the Yidun Island-Arc and Geodynamic Setting of Kuroko-Type Sulfide Deposits in Sanjiang Region, SW China. Resource Geology, 17: 336–350

    Google Scholar 

  • Hou, Z. Q., Yang, Y. Q., Wang, H. P., et al., 2003. Collision-Orogenic Progress and Mineralization System of Yidun Arc. Geological Publishing House, Beijing. 335 (in Chinese)

    Google Scholar 

  • Hronsky, J. M. A., Groves, D. I., Loucks, R. R., et al., 2012. A Unified Model for Gold Mineralisation in Accretionary Orogens and Implications for Regional-Scale Exploration Targeting Methods. Mineralium Deposita, 47(4): 339–358. https://doi.org/10.1007/s00126-012-0402-y

    Article  Google Scholar 

  • Hu, R. Z., Wen, H. J., Su, W. C., et al., 2014. Some Advances in Ore Deposit Geochemistry in Last Decade. Bulletin of Mineralogy, Petrology and Geochemistry, 33(2): 128–144 (in Chinese with English Abstract)

    Google Scholar 

  • Huan, W. J., Li, N., Yuan, W. M., et al., 2013. Fission Track Constrain on Mineralization Time and Tectonic Events in Ganzi-Litang Gold Belt, Tibet Plateau. Acta Petrologica Sinica, 29(4): 1338–1346 (in Chinese with English Abstract)

    Google Scholar 

  • Huan, W. J., Yuan, W. M., Li, N., 2011. Study on the Mineral Electron Microprobe Evidence of the Formation Conditions and Fission Track of Gold Deposits in Garze-Litang Gold Belt, Western Sichuan Province. Geosciences, 25: 261–270 (in Chinese with English Abstract)

    Google Scholar 

  • Jahn, B. M., Wu, F. Y., Lo, C. H., et al., 1999. Crust-Mantle Interaction Induced by Deep Subduction of the Continental Crust: Geochemical and Sr-Nd Isotopic Evidence from Post-Collisional Mafic-Ultramafic Intrusions of the Northern Dabie Complex, Central China. Chemical Geology, 157(1/2): 119–146. https://doi.org/10.1016/s0009-2541(98)00197-1

    Article  Google Scholar 

  • Jian, P., Liu, D. Y., Kröner, A., et al., 2009. Devonian to Permian Plate Tectonic Cycle of the Paleo-Tethys Orogen in Southwest China (II): Insights from Zircon Ages of Ophiolites, Arc/Back-Arc Assemblages and Within-Plate Igneous Rocks and Generation of the Emeishan CFB Province. Lithos, 113(3/4): 767–784. https://doi.org/10.1016/j.lithos.2009.04.006

    Article  Google Scholar 

  • Kapp, P., DeCelles, P. G., Gehrels, G. E., et al., 2007. Geological Records of the Lhasa-Qiangtang and Indo-Asian Collisions in the Nima Area of Central Tibet. Geological Society of America Bulletin, 119(7/8): 917–933. https://doi.org/10.1130/b26033.1

    Article  Google Scholar 

  • Kapp, P., Yin, A., Harrison, T. M., et al., 2005. Cretaceous–Tertiary Shortening, Basin Development, and Volcanism in Central Tibet. Geological Society of America Bulletin, 117(7): 865. https://doi.org/10.1130/b25595.1

    Article  Google Scholar 

  • Katz, R. F., Spiegelman, M., Langmuir, C. H., 2003. A New Parameterization of Hydrous Mantle Melting. Geochemistry, Geophysics, Geosystems, 4(9): 1–19. https://doi.org/10.1029/2002gc000433

    Article  Google Scholar 

  • Kelley, K. A., Plank, T., Grove, T. L., et al., 2006. Mantle Melting as a Function of Water Content beneath Back-Arc Basins. Journal of Geophysical Research, 111(B9): 1–27. https://doi.org/10.1029/2005jb003732

    Article  Google Scholar 

  • Kepezhinskas, P., McDermott, F., Defant, M. J., et al., 1997. Trace Element and Sr-Nd-Pb Isotopic Constraints on a Three-Component Model of Kamchatka Arc Petrogenesis. Geochimica et Cosmochimica Acta, 61(3): 577–600. https://doi.org/10.1016/s0016-7037(96)00349-3

    Article  Google Scholar 

  • Lai, Q. Z., Ding, L., Wang, H. W., et al., 2007. Constraining the Stepwise Migration of the Eastern Tibetan Plateau Margin by Apatite Fission Track Thermochronology. Science in China Series D: Earth Sciences, 50(2): 172–183. https://doi.org/10.1007/s11430-007-2048-7

    Article  Google Scholar 

  • Langmuir, C. H., Klein, E. M., Plank, T., 1992. Petrological Systematics of Mid-Ocean Ridge Basalts: Constraints on Melt Generation beneath Ocean Ridges. In: Mantle Flow and Melt Generation at Mid-Ocean Ridges. American Geophysical Union, Geophysical Monograph, 71: 183–280

    Google Scholar 

  • Le Roux, V., Lee, C. T. A., Turner, S. J., 2010. Zn/Fe Systematics in Mafic and Ultramafic Systems: Implications for Detecting Major Element Heterogeneities in the Earth’s Mantle. Geochimica et Cosmochimica Acta, 74(9): 2779–2796. https://doi.org/10.1016/j.gca.2010.02.004

    Article  Google Scholar 

  • Lee, C. T. A., Luffi, P., Plank, T., et al., 2009. Constraints on the Depths and Temperatures of Basaltic Magma Generation on Earth and Other Terrestrial Planets Using New Thermobarometers for Mafic Magmas. Earth and Planetary Science Letters, 279(1/2): 20–33. https://doi.org/10.1016/j.epsl.2008.12.020

    Article  Google Scholar 

  • Li, D. P., Chen, Y. L., Luo, Z. H., et al., 2009. Zircon SHRIMP U-Pb Dating and Neoproterozoic Metamorphism of Kangding and Yuanmou Intrusive Complexes, Sichuan and Yunnan. Journal of Earth Science, 20(6): 897–908. https://doi.org/10.1007/s12583-009-0076-2

    Article  Google Scholar 

  • Li, H. L., Zhang, Y. Q., Zhang, C. H., et al., 2015. Middle Jurassic Syn-Kinematic Magmatism, Anatexis and Metamorphism in the Zheduo-Gonggar Massif, Implication for the Deformation of the Xianshuihe Fault Zone, East Tibet. Journal of Asian Earth Sciences, 107: 35–52. https://doi.org/10.13039/501100001809

    Article  Google Scholar 

  • Li, J. K., Li, W. C., Wang, D. H., et al., 2007. Re-Os Dating for Ore Forming Event in the Late of Yanshan Epoch and Research of Ore-Forming Regularity in Zhongdian Arc. Acta Petrologica Sinica, 23: 2415–2422 (in Chinese with English Abstract)

    Google Scholar 

  • Li, T. Z., Dai, Y. P., Ma, G. T., et al., 2016a. SHRIMP zircon U-Pb Dating of the Wulaxi Granite in the Western Margin of the Yangtze Block and Its Geological Significance. Bulletin of Mineralogy, Petrology and Geochemistry, 35(4): 744–749 (in Chinese with English Abstract)

    Google Scholar 

  • Li, T. Z., Zhou, Q., Zhang, H. H., et al., 2016b. Ore Geology and Molybdenite Re-Os Dating of the Wulaxi Tungsten Deposit in Western Sichuan. Geological Journal of China Universities, 22(3): 423–430 (in Chinese with English Abstract)

    Google Scholar 

  • Li, X. H., Liu, Y., Li, Q. L., et al., 2009. Precise Determination of Phanerozoic Zircon Pb/Pb Age by Multicollector SIMS without External Standardization. Geochemistry, Geophysics, Geosystems, 10(4): Q04010. https://doi.org/10.1029/2009gc002400

    Google Scholar 

  • Li, X. H., Tang, G. Q., Gong, B., et al., 2013. Qinghu Zircon: A Working Reference for Microbeam Analysis of U-Pb Age and Hf and O Isotopes. Chinese Science Bulletin, 58(36): 4647–4654. https://doi.org/10.1007/s11434-013-5932-x

    Article  Google Scholar 

  • Li, Y. J., Wei, J. H., Chen, H. Y., et al., 2014. Petrogenesis of the Xiasai Early Cretaceous A-Type Granite from the Yidun Island Arc Belt, SW China: Constraints from Zircon U-Pb Age, Geochemistry and Hf Isotope. Geotectonica et Metallogenia, 38(4): 939–954 (in Chinese with English Abstract)

    Google Scholar 

  • Liang, Q., 2000. Determination of Trace Elements in Granites by Inductively Coupled Plasma Mass Spectrometry. Talanta, 51(3): 507–513. https://doi.org/10.1016/s0039-9140(99)00318-5

    Article  Google Scholar 

  • Liu, S. S., Fan, W. Y., Nie, F., et al., 2015. Geological Characteristics and Ore-Controlling Factors Analysis of Suoluogou Gold Deposit, Muli County, Sichuan Province. Gold, 6(36): 98–13 (in Chinese with English Abstract)

    Google Scholar 

  • Liu, Y. S., Gao, S., Kelemen, P. B., et al., 2008. Recycled Crust Controls Contrasting Source Compositions of Mesozoic and Cenozoic Basalts in the North China Craton. Geochimica et Cosmochimica Acta, 72(9): 2349–2376. https://doi.org/10.1016/j.gca.2008.02.018

    Article  Google Scholar 

  • Ludwig, K. R., 2003. User’s Manual for Isoplot/EX, Version 3.70. A Geochronological Toolkit for Microsoft Excel, Special Publication 4. Berkeley Geochronology Center, Berkeley. 76

    Google Scholar 

  • Luo, H. C., Kan, Z. Z., Yang, H., et al., 2012. Mineralogy and Metamorphism of the Changqiang Metamorphic Dome. Journal of Sichuan Geology, 32(2): 133–138 (in Chinese with English Abstract)

    Google Scholar 

  • Ma, G. T., Wang, M. J., Yao, P., et al., 2009. 40Ar-39Ar Dating of Biotite from the Heiniudong Copper Deposit in Jiulong County, Sichuan Province, and Its Geological Significance. Acta Geologica Sinica, 83(5): 673–679 (in Chinese with English Abstract)

    Google Scholar 

  • McKenzie, D., Bickle, M. J., 1988. The Volume and Composition of Melt Generated by Extension of the Lithosphere. Journal of Petrology, 29(3): 625–679. https://doi.org/10.1093/petrology/29.3.625

    Article  Google Scholar 

  • McKenzie, D., O’Nions, R. K., 1991. Partial Melt Distributions from Inversion of Rare Earth Element Concentrations. Journal of Petrology, 32(5): 1021–1091. https://doi.org/10.1093/petrology/32.5.1021

    Article  Google Scholar 

  • Moucha, R., Forte, A. M., Rowley, D. B., et al., 2008. Mantle Convection and the Recent Evolution of the Colorado Plateau and the Rio Grande Rift Valley. Geology, 36(6): 439. https://doi.org/10.1130/g24577a.1

    Article  Google Scholar 

  • Moyen, J. F., 2009. High Sr/Y and La/Yb Ratios: The Meaning of the “Adakitic Signature”. Lithos, 112(3/4): 556–574

    Article  Google Scholar 

  • Nie, F., Fan, W. Y., Liu, S. S., et al., 2015. Structural Characteristics of the Suoluogou Gold Deposit in Muli County, West Sichuan Province. Acta Geologica Sinica—English Edition, 89(5): 1773–1774. https://doi.org/10.1111/1755-6724.12583

    Article  Google Scholar 

  • Pan, G. T., Li, X. Z., Wang, L. Q., et al., 2002. Preliminary Division of Tectonic Units of the Qinghai-Tibet Plateau and Its Adjacent Regions. Geological Bulletin of China, 21: 701–707 (in Chinese with English Abstract)

    Google Scholar 

  • Pan, G. T., Wang, L. Q., Li, R. S., et al., 2012. Tectonic Evolution of the Qinghai-Tibet Plateau. Journal of Asian Earth Sciences, 53: 3–14. https://doi.org/10.1016/j.jseaes.2011.12.018

    Article  Google Scholar 

  • Pearce, J. A., 1996. A User’s Guide to Basalt Discrimination Diagrams. In: Wyman, D. A., ed., Trace Element Geochemistry of Volcanic Rocks: Applications of Massive Sulphide Exploration. Geological Association of Canada, Short Course Notes, 12: 79–113

    Google Scholar 

  • Pearce, J. A., 2008. Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust. Lithos, 100(1/2/3/4): 14–48. https://doi.org/10.1016/j.lithos.2007.06.016

    Article  Google Scholar 

  • Plank, T., Langmuir, C. H., 1998. The Chemical Composition of Subducting Sediment and Its Consequences for the Crust and Mantle. Chemical Geology, 145(3/4): 325–394. https://doi.org/10.1016/s0009-2541(97)00150-2

    Article  Google Scholar 

  • Putirka, K. D., Mikaelian, H., Ryerson, F., et al., 2003. New Clinopyroxene-Liquid Thermobarometers for Mafic, Evolved, and Volatile-Bearing Lava Compositions, with Applications to Lavas from Tibet and the Snake River Plain, Idaho. American Mineralogist, 88(10): 1542–1554. https://doi.org/10.2138/am-2003-1017

    Article  Google Scholar 

  • Putirka, K. D., Perfit, M., Ryerson, F. J., et al., 2007. Ambient and Excess Mantle Temperatures, Olivine Thermometry, and Active vs. Passive Upwelling. Chemical Geology, 241(3/4): 177–206

    Article  Google Scholar 

  • Qu, X. M., Hou, Z. Q., Tang, S. H., 2003. Age of Intraplate Volcanism in the Back-Arc Area of Yidun Island Arc and Its Significance. Petrol. Mineral., 22: 131–137 (in Chinese with English Abstract)

    Google Scholar 

  • Reid, A. J., Fowler, A. P., Phillips, D., et al., 2005a. Thermochronology of the Yidun Arc, Central Eastern Tibetan Plateau: Constraints from 40Ar/39Ar K-Feldspar and Apatite Fission Track Data. Journal of Asian Earth Sciences, 25(6): 915–935. https://doi.org/10.1016/j.jseaes.2004.09.002

    Article  Google Scholar 

  • Reid, A. J., Wilson, C. J. L., Liu, S., 2005b. Structural Evidence for the Permo-Triassic Tectonic Evolution of the Yidun Arc, Eastern Tibetan Plateau. Journal of Structural Geology, 27(1): 119–137. https://doi.org/10.1016/j.jsg.2004.06.011

    Article  Google Scholar 

  • Reid, A. J., Wilson, C. J. L., Liu, S., et al., 2007. Mesozoic Plutons of the Yidun Arc, SW China: U/Pb Geochronology and Hf Isotopic Signature. Ore Geology Reviews, 31(1/2/3/4): 88–106. https://doi.org/10.1016/j.oregeorev.2004.11.003

    Article  Google Scholar 

  • Roger, F., Jolivet, M., Cattin, R., et al., 2011. Mesozoic–Cenozoic Tectonothermal Evolution of the Eastern Part of the Tibetan Plateau (Songpan-Garze, Longmen Shan Area): Insights from Thermochronological Data and Simple Thermal Modelling. Geological Society, London, Special Publications, 353(1): 9–25. https://doi.org/10.1144/sp353.2

    Article  Google Scholar 

  • Roger, F., Jolivet, M., Malavieille, J., 2010. The Tectonic Evolution of the Songpan-Garze (North Tibet) and Adjacent Areas from Proterozoic to Present: A Synthesis. Journal of Asian Earth Sciences, 39(4): 254–269. https://doi.org/10.1016/j.jseaes.2010.03.008

    Article  Google Scholar 

  • Roy, M., Jordan, T. H., Pederson, J., 2009. Colorado Plateau Magmatism and Uplift by Warming of Heterogeneous Lithosphere. Nature, 459(7249): 978–982. https://doi.org/10.1038/nature08052

    Article  Google Scholar 

  • Shellnutt, J. G., Zhou, M. F., Yan, D. P., et al., 2008. Longevity of the Permian Emeishan Mantle Plume (SW China): 1 Ma, 8 Ma or 18 Ma?. Geological Magazine, 145(3): 373–388. https://doi.org/10.1017/s0016756808004524

    Article  Google Scholar 

  • Sláma, J., Košler, J., Condon, D. J., et al., 2008. Plešovice Zircon—A New Natural Reference Material for U-Pb and Hf Isotopic Microanalysis. Chemical Geology, 249(1/2): 1–35. https://doi.org/10.1016/j.chemgeo.2007.11.005

    Article  Google Scholar 

  • Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313–345. https://doi.org/10.1144/gsl.sp.1989.042.01.19

    Article  Google Scholar 

  • Taylor, S. R., Mclennan, S. M., 1985. The Continental Crust: Its Composition and Evolution, an Examination of the Geochemical Record Preserved in Sedimentary Rocks. Blackwell Science Publishing, Oxford. 312

    Google Scholar 

  • Tian, Y. T., Kohn, B. P., Gleadow, A. W., et al., 2014. A Thermochronological Perspective on the Morphotectonic Evolution of the Southeastern Tibetan Plateau. Journal of Geophysical Research: Solid Earth, 119(1): 676–698. https://doi.org/10.1002/2013jb010429

    Google Scholar 

  • Tschegg, C., Ntaflos, T., Akinin, V. V., 2011. Polybaric Petrogenesis of Neogene Alkaline Magmas in an Extensional Tectonic Environment: Viliga Volcanic Field, Northeast Russia. Lithos, 122(1/2): 13–24. https://doi.org/10.13039/100005243

    Article  Google Scholar 

  • Wan, C. H., 2015. Mesozoic Granitoids of the Southern Part, Songpan-Garze Fold Belt: Petrology, Geochemical Composition and Petrogenesis: [Dissertation]. Chengdu University of Technology, Chengdu. 53 (in Chinese with English Abstract)

    Google Scholar 

  • Wang, B. Q., Wang, W., Chen, W. T., et al., 2013a. Constraints of Detrital Zircon U-Pb Ages and Hf Isotopes on the Provenance of the Triassic Yidun Group and Tectonic Evolution of the Yidun Terrane, Eastern Tibet. Sedimentary Geology, 289: 74–98. https://doi.org/10.1016/j.sedgeo.2013.02.005

    Article  Google Scholar 

  • Wang, B. Q., Zhou, M. F., Chen, W. T., et al., 2013b. Petrogenesis and Tectonic Implications of the Triassic Volcanic Rocks in the Northern Yidun Terrane, Eastern Tibet. Lithos, 175/176: 285–301. https://doi.org/10.13039/501100001809

    Article  Google Scholar 

  • Wang, B. Q., Zhou, M. F., Li, J. W., et al., 2011. Late Triassic Porphyritic Intrusions and Associated Volcanic Rocks from the Shangri-La Region, Yidun Terrane, Eastern Tibetan Plateau: Adakitic Magmatism and Porphyry Copper Mineralization. Lithos, 127(1/2): 24–38. https://doi.org/10.1016/j.lithos.2011.07.028

    Article  Google Scholar 

  • Wang, C. Y., Zhou, M. F., Keays, R. R., 2006. Geochemical Constraints on the Origin of the Permian Baimazhai Mafic-Ultramafic Intrusion, SW China. Contributions to Mineralogy and Petrology, 152(3): 309–321. https://doi.org/10.1007/s00410-006-0103-6

    Article  Google Scholar 

  • Wang, C. Y., Zhou, M. F., Qi, L., 2007. Permian Flood Basalts and Mafic Intrusions in the Jinping (SW China)-Song Da (Northern Vietnam) District: Mantle Sources, Crustal Contamination and Sulfide Segregation. Chemical Geology, 243(3/4): 317–343. https://doi.org/10.1016/j.chemgeo.2007.05.017

    Article  Google Scholar 

  • Wang, Q. W., Wang, K. M., Kan, Z. Z., 2008. Granites and Related Mineralization in Western Sichuan. Geological Publishing House, Beijing. 303 (in Chinese)

    Google Scholar 

  • Wang, S. W., Liao, Z. W., Sun, X. M., et al., 2014. The Yanshanian Lithospheric Evolution in the Kangdian Area: Restriction from SHRIMP Zircons U-Pb Age and Geochemistry of Mafic Dykes in Dongchuan, Yunan Province, SW China. Acta Geologica Snica, 88(3): 299–317 (in Chinese with English Abstract)

    Google Scholar 

  • Wang, X. C., Li, X. H., Li, Z. X., et al., 2010. The Willouran Basic Province of South Australia: Its Relation to the Guibei Large Igneous Province in South China and the Breakup of Rodinia. Lithos, 119(3/4): 569–584. https://doi.org/10.1016/j.lithos.2010.08.011

    Article  Google Scholar 

  • Wang, X. C., Li, Z. X., Li, X. H., et al., 2012. Temperature, Pressure, and Composition of the Mantle Source Region of Late Cenozoic Basalts in Hainan Island, SE Asia: A Consequence of a Young Thermal Mantle Plume Close to Subduction Zones?. Journal of Petrology, 53(1): 177–233. https://doi.org/10.1093/petrology/egr061

    Article  Google Scholar 

  • Wang, X. C., Wilde, S. A., Li, Q. L., et al., 2015. Continental Flood Basalts Derived from the Hydrous Mantle Transition Zone. Nature Communications, 6: 7700. https://doi.org/10.1038/ncomms8700

    Google Scholar 

  • Wang, X. S., Bi, X. W., Leng, C. B., et al., 2014a. Geochronology and Geochemistry of Late Cretaceous Igneous Intrusions and Mo-Cu-(W) Mineralization in the Southern Yidun Arc, SW China: Implications for Metallogenesis and Geodynamic Setting. Ore Geology Reviews, 61: 73–95. https://doi.org/10.1016/j.oregeorev.2014.01.006

    Article  Google Scholar 

  • Wang, X. S., Hu, R. Z., Bi, X. W., et al., 2014b. Petrogenesis of Late Cretaceous I-Type Granites in the Southern Yidun Terrane: New Constraints on the Late Mesozoic Tectonic Evolution of the Eastern Tibetan Plateau. Lithos, 208/209: 202–219. https://doi.org/10.13039/501100005231

    Article  Google Scholar 

  • Wiedenbeck, M., Allé, P., Corfu, F., et al., 1995. Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and REE Analyses. Geostandards and Geoanalytical Research, 19(1): 1–23. https://doi.org/10.1111/j.1751-908x.1995.tb00147.x

    Article  Google Scholar 

  • Wilson, M., 1989. Igneous Petrogenesis. Unwin Hyman, London. 466

    Book  Google Scholar 

  • Wu, T., Xiao, L., Gao, R., et al., 2014. Petrogenesis and Tectonic Setting of the Queershan Composite Granitic Pluton, Eastern Tibetan Plateau: Constraints from Geochronology, Geochemistry and Hf Isotope Data. Science China Earth Sciences, 57(11): 2712–2725. https://doi.org/10.1007/s11430-014-4936-y

    Article  Google Scholar 

  • Wu, T., Xiao, L., Ma, C. Q., 2016. U-Pb Geochronology of Detrital and Inherited Zircons in the Yidun Arc Belt, Eastern Tibet Plateau and Its Tectonic Implications. Journal of Earth Science, 27(3): 461–473. https://doi.org/10.1007/s12583-016-0675-5

    Article  Google Scholar 

  • Xu, C., Huang, Z. L., Qi, L., et al., 2007. Geochemistry of Cretaceous Granites from Mianning in the Panxi Region, Sichuan Province, Southwestern China: Implications for Their Generation. Journal of Asian Earth Sciences, 29(5/6): 737–750. https://doi.org/10.1016/j.jseaes.2006.03.013

    Article  Google Scholar 

  • Xu, G. Q., Kamp, P. J. J., 2000. Tectonics and Denudation Adjacent to the Xianshuihe Fault, Eastern Tibetan Plateau: Constraints from Fission Track Thermochronology. Journal of Geophysical Research: Solid Earth, 105(B8): 19231–19251. https://doi.org/10.1029/2000jb900159

    Article  Google Scholar 

  • Xu, Y. G., Chung, S. L., Jahn, B. M., et al., 2001. Petrologic and Geochemical Constraints on the Petrogenesis of Permian–Triassic Emeishan Flood Basalts in Southwestern China. Lithos, 58(3/4): 145–168

    Article  Google Scholar 

  • Yan, D. P., Zhou, M. F., Li, S. B., et al., 2011. Structural and Geochronological Constraints on the Mesozoic–Cenozoic Tectonic Evolution of the Longmen Shan Thrust Belt, Eastern Tibetan Plateau. Tectonics, 30(6): TC6005. https://doi.org/10.1029/2011tc002867

    Article  Google Scholar 

  • Yan, D. P., Zhou, M. F., Song, H. L., et al., 2003. Structural Style and Tectonic Significance of the Jianglang Dome in the Eastern Margin of the Tibetan Plateau, China. Journal of Structural Geology, 25(5): 765–779. https://doi.org/10.1016/s0191-8141(02)00059-7

    Article  Google Scholar 

  • Yang, L. Q., Deng, J., Dilek, Y., et al., 2016. Melt Source and Evolution of I-Type Granitoids in the SE Tibetan Plateau: Late Cretaceous Magmatism and Mineralization Driven by Collision-Induced Transtensional Tectonics. Lithos, 245: 258–273. https://doi.org/10.13039/501100002366

    Article  Google Scholar 

  • Yang, L. Q., Deng, J., Gao, X., et al., 2017. Timing of Formation and Origin of the Tongchanggou Porphyry-Skarn Deposit: Implications for Late Cretaceous Mo-Cu Metallogenesis in the Southern Yidun Terrane, SE Tibetan Plateau. Ore Geology Reviews, 81: 1015–1032. https://doi.org/10.1016/j.oregeorev.2016.03.015

    Article  Google Scholar 

  • Yang, T. N., Ding, Y., Zhang, H. R., et al., 2014. Two-Phase Subduction and Subsequent Collision Defines the Paleotethyan Tectonics of the Southeastern Tibetan Plateau: Evidence from Zircon U-Pb Dating, Geochemistry, and Structural Geology of the Sanjiang Orogenic Belt, Southwest China. Geological Society of America Bulletin, 126(11/12): 1654–1682. https://doi.org/10.1130/b30921.1

    Article  Google Scholar 

  • Yang, T. N., Hou, Z. Q., Wang, Y., et al., 2012. Late Paleozoic to Early Mesozoic Tectonic Evolution of Northeast Tibet: Evidence from the Triassic Composite Western Jinsha-Garze-Litang Suture. Tectonics, 31(4): TC4004. https://doi.org/10.1029/2011tc003044

    Article  Google Scholar 

  • Yao, P., Wang, M. J., Li, J. Z., et al., 2008. Isotopic Tracing of the Liwu-Type Cu-Rich Deposits and Its Ore-Forming Geological Significance. Acta Geologica Sinica, 29(6): 691–696 (in Chinese with English Abstract)

    Google Scholar 

  • Zhang, K. J., Zhang, Y. X., Tang, X. C., et al., 2012. Late Mesozoic Tectonic Evolution and Growth of the Tibetan Plateau Prior to the Indo-Asian Collision. Earth-Science Reviews, 114(3/4): 236–249

    Article  Google Scholar 

  • Zhang, Y., Wang, Q. F., Zhang, J., et al., 2012. Geological Characteristics and Genesis of Ajialongwa Gold Deposit in Ganzi-Litang Suture Zone, West Sichuan. Acta Petrologica Sinica, 28(2): 691–701 (in Chinese with English Abstract)

    Google Scholar 

  • Zhang, Z. C., Wang, F. S., Hao, Y. L., et al., 2004. Geochemistry of the Picrites and Associated Basalts from the Emeishan Large Igneous Basalt Province and Constraints on Their Source Region. Acta Geologica Sinica, 78: 171–180 (in Chinese with English Abstract)

    Google Scholar 

  • Zheng, M. H., Yang, Z. X., Gu, X. X., 1995. Metallogenic Environment and Genetic Model of Erze Karst-Type Gold Deposit of Muli, Sichuan Province. Scientia Geologica Sinica, 30: 363–373 (in Chinese with English Abstract)

    Google Scholar 

  • Zhou, J. Y., Tan, H. Q., Gong, D. X., et al., 2013. Zircon LA-ICP-MS U-Pb Dating and Hf Isotopic Composition of Xinhuoshan Granite in the Core of Jianglang Dome, Western Sichuan, China. J. Mineral. Petrol., 33(4): 42–52 (in Chinese with English Abstract)

    Google Scholar 

  • Zhou, M. F., Robinson, P. T., Wang, C. Y., et al., 2012. Heterogeneous Mantle Source and Magma Differentiation of Quaternary Arc-Like Volcanic Rocks from Tengchong, SE Margin of the Tibetan Plateau. Contributions to Mineralogy and Petrology, 163(5): 841–860. https://doi.org/10.1007/s00410-011-0702-8

    Article  Google Scholar 

  • Zhou, M. F., Yan, D. P., Kennedy, A. K., et al., 2002. SHRIMP U-Pb Zircon Geochronological and Geochemical Evidence for Neoproterozoic Arc-Magmatism along the Western Margin of the Yangtze Block, South China. Earth and Planetary Science Letters, 196(1/2): 51–67. https://doi.org/10.1016/s0012-821x(01)00595-7

    Article  Google Scholar 

  • Zhou, M. F., Yan, D. P., Wang, C. L., et al., 2006a. Subduction-Related Origin of the 750 Ma Xuelongbao Adakitic Complex (Sichuan Province, China): Implications for the Tectonic Setting of the Giant Neoproterozoic Magmatic Event in South China. Earth and Planetary Science Letters, 248(1/2): 286–300. https://doi.org/10.1016/j.epsl.2006.05.032

    Article  Google Scholar 

  • Zhou, M. F., Ma, Y., Yan, D. P., et al., 2006b. The Yanbian Terrane (Southern Sichuan Province, SW China): A Neoproterozoic Arc Assemblage in the Western Margin of the Yangtze Block. Precambrian Research, 144(1/2): 19–38. https://doi.org/10.1016/j.precamres.2005.11.002

    Article  Google Scholar 

  • Zhu, D. C., Li, S. M., Cawood, P. A., et al., 2016. Assembly of the Lhasa and Qiangtang Terranes in Central Tibet by Divergent Double Subduction. Lithos, 245: 7–17. https://doi.org/10.13039/501100002367

    Article  Google Scholar 

  • Zi, J. W., Cawood, P. A., Fan, W. M., et al., 2013. Late Permian–Triassic Magmatic Evolution in the Jinshajiang Orogenic Belt, SW China and Implications for Orogenic Processes Following Closure of the Paleo-Tethys. American Journal of Science, 313(2): 81–112. https://doi.org/10.2475/02.2013.02

    Article  Google Scholar 

  • Zu, B., Xue, C. J., Chi, G. X., et al., 2016. Geology, Geochronology and Geochemistry of Granitic Intrusions and the Related Ores at the Hongshan Cu-Polymetallic Deposit: Insights into the Late Cretaceous Post-Collisional Porphyry-Related Mineralization Systems in the Southern Yidun Arc, SW China. Ore Geology Reviews, 77: 25–42. https://doi.org/10.13039/501100001809

    Article  Google Scholar 

  • Zu, B., Xue, C. J., Zhao, Y., et al., 2015. Late Cretaceous Metallogeny in the Zhongdian Area: Constraints from Re-Os Dating of Molybdenite and Pyrrhotite from the Hongshan Cu Deposit, Yunnan, China. Ore Geology Reviews, 64: 1–12. https://doi.org/10.13039/501100001809

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Nos. 41372212, 41672216, and 41702207). We thank Drs. Zhiguo Cheng and Dong Liu for helpful discussion. We gratefully acknowledged the helpful and constructive reviews by two anonymous reviewers and effective editorial handling by the editors. The final publication is available at Springer via https://doi.org/10.1007/s12583-018-0825-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danping Yan.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Yan, D. & Qiu, L. Early Cretaceous Post-Collisional Collapse of the Yidun Terrane: Geochronological and Geochemical Constraints from Calc-alkaline to Alkaline Basalts in Xiqiu Area, Southwest China. J. Earth Sci. 29, 57–77 (2018). https://doi.org/10.1007/s12583-018-0825-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-018-0825-1

Key words

Navigation