Advertisement

Journal of Earth Science

, Volume 29, Issue 2, pp 376–390 | Cite as

Transformation from Neoproterozoic Sinistral to Early Paleozoic Dextral Shearing for the Jingdezhen Ductile Shear Zone in the Jiangnan Orogen, South China

  • Xianbing Xu
  • Shoufa Lin
  • Shuai Tang
  • Xuefen Zhang
Structural Geology

Abstract

The Jingdezhen ductile shear zone is evolved from the Neoproterozoic Zhangyuan ophiolite mélange belt in the eastern Jiangnan Orogen, South China. Comprehensive study of geometry, kinematics, quartz c-axis fabric, temperature-pressure conditions and geochronology were conducted in this study. The Jingdezhen shear zone extends ∼180 km along the NE orientation with two groups of subvertical foliation and subhorizontal lineation. One group of foliation strikes NEN orientation whereas another one NEE orientation. Field investigation, microscopic observation and quartz c-axis fabric show that sinistral shearing along NEN-striking foliation occurred earlier than dextral shearing along NEE-striking foliation. Syn-tectonic staurolite porphyroblasts and deformation manner of feldspar imply that sinistral shearing occurred at 530–420 ºC and 6–2 kbar. Deformation manner and c-axis fabric of quartz and pre-tectonic staurolite porphyroblasts indicate that dextral shearing took place at 420–300 ºC. LA-ICP-MS zircon U-Pb and mica 40Ar/39Ar dating indicate that the sinistral shearing occurred during Neoproterozoic orogeny (830–800 Ma) whereas the dextral shearing at 447±12 Ma. The sinistral shearing resulted from the Neoproterozoic final assembly between the Yangtze and Cathaysia blocks. The dextral shearing was caused by Early Paleozoic orogen parallel extension and clockwise rotation.

Key words

Jingdezhen ductile shear zone quartz c-axis fabric temperature-pressure condition geochronology Jiangnan Orogen South China 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

Thanks are given to Dr. Meiling Wu for her help with mineral identification, Drs. Changcheng Li and Qihang Wu for their help with quartz c-axis fabric analysis. This work was supported by the National Natural Science Foundation of China (Nos. 41402174, 41472166), the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan), China Scholarship Council (No. 201406415007) and the Natural Sciences and Engineering Research Council of Canada. The final publication is available at Springer via https://doi.org/10.1007/s12583-017-0965-8.

References Cited

  1. Bai, W. J., Gan, Q. G., Yang, J. S., et al., 1986. Discovery of Well-Reserved Ophiolite and Its Basical Characters in Southern Margin of the Jiangnan Ancient Continent. Acta Petrologica et Mineralogica, 5(4): 289–299 (in Chinese with English Abstract)Google Scholar
  2. Beltrando, M., Lister, G. S., Forster, M., et al., 2009. Dating Microstructures by the 40Ar/39Ar Step-Heating Technique: Deformation-Pressure-Temperature-Time History of the Penninic Units of the Western Alps. Lithos, 113(3/4): 801–819. https://doi.org/10.1016/j.lithos.2009.07.006CrossRefGoogle Scholar
  3. Bickle, M. J., Archibald, N. J., 1984. Chloritoid and Staurolite Stability: Implications for Metamorphism in the Archaean Yilgarn Block, Western Australia. Journal of Metamorphic Geology, 2(3): 179–203. https://doi.org/10.1111/j.1525-1314.1984.tb00295.xCrossRefGoogle Scholar
  4. Bouchez, J. L., 1977. Plastic Deformation of Quartzites at Low Temperature in an Area of Natural Strain Gradient. Tectonophysics, 39(1/2/3): 25–50. https://doi.org/10.1016/0040-1951(77)90086-5CrossRefGoogle Scholar
  5. Charvet, J., 2013. The Neoproterozoic–Early Paleozoic Tectonic Evolution of the South China Block: An Overview. Journal of Asian Earth Sciences, 74: 198–209. https://doi.org/10.1016/j.jseaes.2013.02.015CrossRefGoogle Scholar
  6. Charvet, J., Shu, L. S., Faure, M., et al., 2010. Structural Development of the Lower Paleozoic Belt of South China: Genesis of an Intracontinental Orogen. Journal of Asian Earth Sciences, 39(4): 309–330. https://doi.org/10.1016/j.jseaes.2010.03.006CrossRefGoogle Scholar
  7. Charvet, J., Shu, L. S., Shi, Y. S., et al., 1996. The Building of South China: Collision of Yangzi and Cathaysia Blocks, Problems and Tentative Answers. Journal of Southeast Asian Earth Sciences, 13(3/4/5): 223–235. https://doi.org/10.1016/0743-9547(96)00029-3CrossRefGoogle Scholar
  8. Chen, B. L., Dong, F. X., Shen, T. Y., 1998. Study of Ductile Shear Zone Developing in Epimetamorphic Detrital Rocks, Dabeiwu Area, Jiangxi Province. Geoscience, 12(3): 311–317 (in Chinese with English Abstract)Google Scholar
  9. Chen, W., Zhang, Y., Zhang, Y. Q., et al., 2006. Late Cenozoic Episodic Uplifting in Southeastern Part of the Tibetan Plateau Evidence from Ar-Ar Thermochronology. Acta Petrologica Sinica, 22(4): 867–872 (in Chinese with English Abstract)Google Scholar
  10. Chu, Y., Lin, W., 2014. Phanerozoic Polyorogenic Deformation in Southern Jiuling Massif, Northern South China Block: Constraints from Structural Analysis and Geochronology. Journal of Asian Earth Sciences, 86: 117–130. https://doi.org/10.1016/j.jseaes.2013.05.019CrossRefGoogle Scholar
  11. Cui, X., Zhu, W. B., Fitzsimons, I. C. W., et al., 2015. U-Pb Age and Hf Isotope Composition of Detrital Zircons from Neoproterozoic Sedimentary Units in Southern Anhui Province, South China: Implications for the Provenance, Tectonic Evolution and Glacial History of the Eastern Jiangnan Orogen. Precambrian Research, 271: 65–82. https://doi.org/10.13039/501100001809CrossRefGoogle Scholar
  12. Cui, X., Zhu, W. B., Fitzsimons, I. C. W., et al., 2017. A Possible Transition from Island Arc to Continental Arc Magmatism in the Eastern Jiangnan Orogen, South China: Insights from a Neoproterozoic (870–860 Ma) Gabbroic-Dioritic Complex near the Fuchuan Ophiolite. Gondwana Research, 46: 1–16. https://doi.org/10.13039/501100001809CrossRefGoogle Scholar
  13. Dalrymple, G. B., Lanphere, M. A., 1974. 40Ar/39Ar Age Spectra of some Undisturbed Terrestrial Samples. Geochimica et Cosmochimica Acta, 38(5): 715–738. https://doi.org/10.1016/0016-7037(74)90146-xCrossRefGoogle Scholar
  14. Ding, B. H., Shi, R. D., Zhi, X. C., et al., 2008. Neoproterozoic (∼850 Ma) Subduction in the Jiangnan Orogen: Evidence from the SHRIMP U-Pb Dating of the SSZ-Type Ophiolite in Southern Anhui Province. Acta Petrologica Sinica, 27: 375–388 (in Chinese with English Abstract)Google Scholar
  15. Faure, M., Shu, L. S., Wang, B., et al., 2009. Intracontinental Subduction: A Possible Mechanism for the Early Palaeozoic Orogen of SE China. Terra Nova, 21(5): 360–368. https://doi.org/10.1111/j.1365-3121.2009.00888.xCrossRefGoogle Scholar
  16. Forster, M. A., Lister, G. S., 2004. The Interpretation of 40Ar/39Ar Apparent Age Spectra Produced by Mixing: Application of the Method of Asymptotes and Limits. Journal of Structural Geology, 26(2): 287–305. https://doi.org/10.1016/j.jsg.2003.10.004CrossRefGoogle Scholar
  17. Ganguly, J., 1972. Staurolite Stability and Related Parageneses: Theory, Experiments, and Applications. Journal of Petrology, 13(2): 335–365. https://doi.org/10.1093/petrology/13.2.335CrossRefGoogle Scholar
  18. Gapais, D., 1989. Shear Structures within Deformed Granites: Mechanical and Thermal Indicators. Geology, 17(12): 1144. https://doi.org/10.1130/0091-7613(1989)017<1144:sswdgm>2.3.co;2CrossRefGoogle Scholar
  19. Gates, A. E., Glover, L. III, 1989. Alleghanian Tectono-Thermal Evolution of the Dextral Transcurrent Hylas Zone, Virginia Piedmont, U.S.A.. Journal of Structural Geology, 11(4): 407–419. https://doi.org/10.1016/0191-8141(89)90018-7CrossRefGoogle Scholar
  20. Gong, G. H., Chen, H. L., Wang, F., et al., 2016. The Ductile Deformation Characteristics of Caledonian Intracontinental Orogeny in the Northeastern Jiangshan-Shaoxing Tectonic Zone: Insights from Magnetic Fabric Study and Its Geodynamic Implication. Acta Geologica Sinica—English Edition, 90(1): 75–87. https://doi.org/10.1111/1755-6724.12643CrossRefGoogle Scholar
  21. Harrison, T. M., Célérier, J., Aikman, A. B., et al., 2009. Diffusion of 40Ar in Muscovite. Geochimica et Cosmochimica Acta, 73(4): 1039–1051. https://doi.org/10.1016/j.gca.2008.09.038CrossRefGoogle Scholar
  22. Heizler, M. T., Harrison, T. M., 1988. Multiple Trapped Argon Isotope Components Revealed by 40Ar/39Ar Isochron Analysis. Geochimica et Cosmochimica Acta, 52(5): 1295–1303. https://doi.org/10.1016/0016-7037(88)90283-9CrossRefGoogle Scholar
  23. Hoschek, G., 1969. The Stability of Staurolite and Chloritoid and Their Significance in Metamorphism of Pelitic Rocks. Contributions to Mineralogy and Petrology, 22(3): 208–232. https://doi.org/10.1007/bf00387954CrossRefGoogle Scholar
  24. Hu, P., Chen, N. S., Xu, X. B., et al., 2014. Zircon LA-ICP-MS U-Pb Dating of Mesozoic Granitic Plutons and Its Geological Significance in Wuyuan Region, the Southern Border between the Jiangxi and Anhui Provinces. Geological Science and Technology Information, 33(4): 24–30 (in Chinese with English Abstract)Google Scholar
  25. Hu, S. L., Zou, H. B., Zhou, X. M., 1992. Two 40Ar/39Ar Ages from Proterozoic Jiangnan Collisional Belt. Chinese Science Bulletin, 37: 286 (in Chinese)Google Scholar
  26. Jiangxi Bureau of Geology and Mineral Resources (JXBGMR), 1984. Regional Geology of Jiangxi Province. Geological Publishing House, Beijing (in Chinese)Google Scholar
  27. Li, D. W., Lu, Y., 1991. Approach to Dabeiwu Gold-Bearing Shear Zone in Jiangxi Province. Geology of Jiangxi, 15(1): 61–68 (in Chinese with English Abstract)Google Scholar
  28. Li, H. B., Jia, D., Wu, L., et al., 2013. Detrital Zircon Provenance of the Lower Yangtze Foreland Basin Deposits: Constraints on the Evolution of the Early Palaeozoic Wuyi-Yunkai Orogenic Belt in South China. Geological Magazine, 150(6): 959–974. https://doi.org/10.1017/s0016756812000969CrossRefGoogle Scholar
  29. Li, J. H., Dong, S. W., Zhang, Y., et al., 2016. New Insights into Phanerozoic Tectonics of South China: Part 1, Polyphase Deformation in the Jiuling and Lianyunshan Domains of the Central Jiangnan Orogen. Journal of Geophysical Research: Solid Earth, 121(4): 3048–3080. https://doi.org/10.13039/501100001809Google Scholar
  30. Li, J. H., Zhang, Y. Q., Zhao, G., et al., 2017. New Insights into Phanerozoic Tectonics of South China: Early Paleozoic Sinistral and Triassic Dextral Transpression in the East Wuyishan and Chencai Domains, NE Cathaysia. Tectonics, 36(5): 819–853. https://doi.org/10.13039/501100001809CrossRefGoogle Scholar
  31. Li, L. M., Lin, S. F., Xing, G. F., et al., 2016. Ca. 830 Ma Back-Arc Type Volcanic Rocks in the Eastern Part of the Jiangnan Orogen: Implications for the Neoproterozoic Tectonic Evolution of South China Block. Precambrian Research, 275: 209–224. https://doi.org/10.13039/501100001809CrossRefGoogle Scholar
  32. Li, L. M., Lin, S. F., Xing, G. F., et al., 2017. Geochronology and Geochemistry of Volcanic Rocks from the Jingtan Formation in the Eastern Jiangnan Orogen, South China: Constraints on Petrogenesis and Tectonic Implications. Precambrian Research. https://doi.org/10.13039/501100001809Google Scholar
  33. Li, W. X., Li, X. H., Li, Z. X., et al., 2008. Obduction-Type Granites within the NE Jiangxi Ophiolite: Implications for the Final Amalgamation between the Yangtze and Cathaysia Blocks. Gondwana Research, 13(3): 288–301. https://doi.org/10.1016/j.gr.2007.12.010CrossRefGoogle Scholar
  34. Li, X. H., Li, W. X., Li, Z. X., et al., 2009. Amalgamation between the Yangtze and Cathaysia Blocks in South China: Constraints from SHRIMP U-Pb Zircon Ages, Geochemistry and Nd-Hf Isotopes of the Shuangxiwu Volcanic Rocks. Precambrian Research, 174(1/2): 117–128. https://doi.org/10.1016/j.precamres.2009.07.004CrossRefGoogle Scholar
  35. Li, X. H., Li, Z. X., Ge, W. C., et al., 2003. Neoproterozoic Granitoids in South China: Crustal Melting above a Mantle Plume at ca. 825Ma? Precambrian Research, 122(1): 45–83CrossRefGoogle Scholar
  36. Li, Z. X., Li, X. H., Wartho, J. A., et al., 2010. Magmatic and Metamorphic Events during the Early Paleozoic Wuyi-Yunkai Orogeny, Southeastern South China: New Age Constraints and Pressure-Temperature Conditions. Geological Society of America Bulletin, 122(5/6): 772–793. https://doi.org/10.1130/b30021.1CrossRefGoogle Scholar
  37. Lin, W., Faure, M., Sun, Y., et al., 2001. Compression to Extension Switch during the Middle Triassic Orogeny of Eastern China: The Case Study of the Jiulingshan Massif in the Southern Foreland of the Dabieshan. Journal of Asian Earth Sciences, 20(1): 31–43. https://doi.org/10.1016/s1367-9120(01)00020-7CrossRefGoogle Scholar
  38. Lou, F. S., Huang, Z. Z., Wu, X. H., et al., 2003. The Feature and Division of Tectonic Units in Center of South China. Resources Survey & Environment, 24(3): 177–184 (in Chinese with English Abstract)Google Scholar
  39. McDougall, I., Harrison, T. M., 1999. Geochronology and Thermochronology by the 40Ar/39Ar Method. Oxford University Press, DemandGoogle Scholar
  40. Meert, J. G., 2003. A Synopsis of Events Related to the Assembly of Eastern Gondwana. Tectonophysics, 362(1/2/3/4): 1–40. https://doi.org/10.1016/s0040-1951(02)00629-7CrossRefGoogle Scholar
  41. Nicolas, A., Poirier, J. P., 1976. Crystalline Plasticity and Solid State Flow in Metamorphic Rocks. John Wiley & Sons, New YorkGoogle Scholar
  42. Passchier, C. W., Trouw, R. A. J., 2005. Microtectonics. Springer, Berlin Heidelberg, New YorkGoogle Scholar
  43. Purdy, J. W., Jäger, E., 1976. K-Ar Ages on Rock-Forming Minerals from the Central Alps. Mem. 1st Geol. Mineral Univ Padova, 30: 1–32Google Scholar
  44. Reddy, S. M., Kelley, S. P., Magennis, L., 1997. A Microstructural and Argon Laserprobe Study of Shear Zone Development at the Western Margin of the Nanga Parbat-Haramosh Massif, Western Himalaya. Contributions to Mineralogy and Petrology, 128(1): 16–29. https://doi.org/10.1007/s004100050290CrossRefGoogle Scholar
  45. Ren, J. S.,Wa ng, Z. X., Chen, B. W., 1999. See Tectonics of China from a Global Scale—A Brief Introduction to the Tectonic Map of China and Adjacent Areas. Geological Publishing House, Beijing. 1–50 (in Chinese)Google Scholar
  46. Shen, T. Y., 1993. A Discussion on the Features of Ductile (Brittle) Shear Zone and Its Relation to the Gold Deposit in the Northeastern Part of Jingdezhen. Geology of Jiangxi, 8(2): 103–109 (in Chinese with English Abstract)Google Scholar
  47. Shu, L. S., 2012. An Analysis of Principal Features of Tectonic Evolution in South China Block. Geological Bulletin of China, 31(7): 1035–1053 (in Chinese with English Abstract)Google Scholar
  48. Shu, L. S., Charvet, J., 1996. Kinematics and Geochronology of the Proterozoic Dongxiang-Shexian Ductile Shear Zone: With HP Metamorphism and Ophiolitic Melange (Jiangnan Region, South China). Tectonophysics, 267(1/2/3/4): 291–302. https://doi.org/10.1016/s0040-1951(96)00104-7CrossRefGoogle Scholar
  49. Shu, L. S., Charvet, J., Shi, Y. S., et al., 1991. Structural Analysis of the Nanchang-Wanzai Sinistral Ductile Shear Zone (Jiangnan Region, South China). Journal of Southeast Asian Earth Sciences, 6(1): 13–23. https://doi.org/10.1016/0743-9547(91)90091-bCrossRefGoogle Scholar
  50. Shu, L. S., Jahn, B. M., Charvet, J., et al., 2014. Early Paleozoic Depositional Environment and Intraplate Tectono-Magmatism in the Cathaysia Block (South China): Evidence from Stratigraphic, Structural, Geochemical and Geochronological Investigations. American Journal of Science, 314(1): 154–186. https://doi.org/10.2475/01.2014.05CrossRefGoogle Scholar
  51. Shu, L. S., Shi, Y. S., Guo, L. Z., et al., 1995. Plate Tectonic Evolution and the Kinematics of Collisional Orogeny in the Middle Jiangnan, Eastern China. Publishing House of Nanjing University, Nanjing (in Chinese with English Abstract)Google Scholar
  52. Shu, L. S., Wang, B., Cawood, P. A., et al., 2015. Early Paleozoic and Early Mesozoic Intraplate Tectonic and Magmatic Events in the Cathaysia Block, South China. Tectonics, 34(8): 1600–1621. https://doi.org/10.13039/501100001809CrossRefGoogle Scholar
  53. Shu, L. S., Zhou, G. Q., Shi, Y. S., et al., 1994. Study of the High-Pressure Metamorphic Blueschist and Its Late Proterozoic Age in the Eastern Jiangnan Belt. Chinese Science Bulletin, 39: 1200–1204Google Scholar
  54. Shu, L. S., Zhou, X. M., Deng, P., et al., 2009. Mesozoic Tectonic Evolution of the Southeast China Block: New Insights from Basin Analysis. Journal of Asian Earth Sciences, 34(3): 376–391. https://doi.org/10.1016/j.jseaes.2008.06.004CrossRefGoogle Scholar
  55. Tang, S., Xu, X. B., Yuan, Y. M., 2016. Geochemisty and Geochronology of the Volcanic Rocks from Tunxi Basin in Southern Anhui and Their Tectonic Implication. Acta Petrologica et Mineralogica, 35(2): 1–18 (in Chinese with English Abstract)Google Scholar
  56. Tong, J. N., Yin, H. F., 2002. The Lower Triassic of South China. Journal of Asian Earth Sciences, 20(7): 803–815. https://doi.org/10.1016/s1367-9120(01)00058-xCrossRefGoogle Scholar
  57. Wang, J., Li, Z. X., 2001. Sequence Stratigraphy and Evolution of the Neoproterozoic Marginal Basins along Southeastern Yangtze Craton, South China. Gondwana Research, 4(1): 17–26. https://doi.org/10.1016/s1342-937x(05)70651-1CrossRefGoogle Scholar
  58. Wang, J., Li, Z. X., 2003. History of Neoproterozoic Rift Basins in South China: Implications for Rodinia Break-Up. Precambrian Research, 122(1/2/3/4): 141–158. https://doi.org/10.1016/s0301-9268(02)00209-7CrossRefGoogle Scholar
  59. Wang, P. A., Dong, F. X., Liu, J. M., et al., 1998. Geology and Geochemistry of the Dabeiwu Gold Deposit, Jiangxi Province. Mineral Deposits, 17(1): 57–69 (in Chinese with English Abstract)Google Scholar
  60. Wang, P. C., Li, S. Z., Liu, X., et al., 2012. Yanshanian Fold-Thrust Tectonics and Dynamics in the Middle–Lower Yangtze River Area, China. Acta Petrologica Sinica, 28(10): 3418–3430 (in Chinese with English Abstract)Google Scholar
  61. Wang, P. C., Zhao, S. J., Li, S. Z., et al., 2015. The Styles and Dynamics of Thrust in the South of the Middle–Lower Yangtze River Area, China. Acta Petrologica Sinica, 31(1): 230–244 (in Chinese with English Abstract)Google Scholar
  62. Wang, W., Zhou, M. F., Yan, D. P., et al., 2013. Detrital Zircon Record of Neoproterozoic Active-Margin Sedimentation in the Eastern Jiangnan Orogen, South China. Precambrian Research, 235: 1–19. https://doi.org/10.1016/j.precamres.2013.05.013CrossRefGoogle Scholar
  63. Wang, X. L., Shu, L. S., Xing, G. F., et al., 2012. Post-Orogenic Extension in the Eastern Part of the Jiangnan Orogen: Evidence from ca. 800–760 Ma Volcanic Rocks. Precambrian Research, 222/223: 404–423. https://doi.org/10.1016/j.precamres.2011.07.003CrossRefGoogle Scholar
  64. Wang, X. L., Zhao, G. C., Zhou, J. C., et al., 2008. Geochronology and Hf Isotopes of Zircon from Volcanic Rocks of the Shuangqiaoshan Group, South China: Implications for the Neoproterozoic Tectonic Evolution of the Eastern Jiangnan Orogen. Gondwana Research, 14(3): 355–367. https://doi.org/10.1016/j.gr.2008.03.001CrossRefGoogle Scholar
  65. Wang, X. L., Zhou, J. C., Griffin, W. L., et al., 2007. Detrital Zircon Geochronology of Precambrian Basement Sequences in the Jiangnan Orogen: Dating the Assembly of the Yangtze and Cathaysia Blocks. Precambrian Research, 159(1/2): 117–131. https://doi.org/10.1016/j.precamres.2007.06.005CrossRefGoogle Scholar
  66. Wang, Y. J., Zhang, A. M., Cawood, P. A., et al., 2013a. Geochronological, Geochemical and Nd-Hf-Os Isotopic Fingerprinting of an Early Neoproterozoic Arc-Back-Arc System in South China and Its Accretionary Assembly along the Margin of Rodinia. Precambrian Research, 231: 343–371. https://doi.org/10.1016/j.precamres.2013.03.020CrossRefGoogle Scholar
  67. Wang, Y. J., Fan, W. M., Zhang, G. W., et al., 2013b. Phanerozoic Tectonics of the South China Block: Key Observations and Controversies. Gondwana Research, 23(4): 1273–1305. https://doi.org/10.13039/501100002367CrossRefGoogle Scholar
  68. Wang, Y. J., Zhang, A. M., Fan, W. M., et al., 2011. Kwangsian Crustal Anatexis within the Eastern South China Block: Geochemical, Zircon U-Pb Geochronological and Hf Isotopic Fingerprints from the Gneissoid Granites of Wugong and Wuyi-Yunkai Domains. Lithos, 127(1/2): 239–260. https://doi.org/10.13039/501100001809CrossRefGoogle Scholar
  69. Wang, Z. X., Li, C. L., Wang, D. X., et al., 2015. Discovery of the Early Devonian Sinistral Shear in the Jiangshan-Shaoxing Fault Zone and Its Tectonic Significance. Acta Geologica Sinica—English Edition, 89(4): 1412–1413. https://doi.org/10.1111/1755-6724.12540CrossRefGoogle Scholar
  70. Wu, R. X., Zheng, Y. F., Wu, Y. B., et al., 2006. Reworking of Juvenile Crust: Element and Isotope Evidence from Neoproterozoic Granodiorite in South China. Precambrian Research, 146(3/4): 179–212. https://doi.org/10.1016/j.precamres.2006.01.012CrossRefGoogle Scholar
  71. Xu, B., Guo, L. Z., Shi, Y. S., 1992. Proterozoic Terranes and Multiphase Collision Orogens in Anhui-Zhejiang-Jiangxi Area. Geological Publishing House, Beijing (in Chinese with English Abstract)Google Scholar
  72. Xu, X. B., Li, Y., Tang, S., et al., 2015a. Neoproterozoic to Early Paleozoic Polyorogenic Deformation in the Southeastern Margin of the Yangtze Block: Constraints from Structural Analysis and 40Ar/39Ar Geochronology. Journal of Asian Earth Sciences, 98: 141–151. https://doi.org/10.13039/501100001809CrossRefGoogle Scholar
  73. Xu, X. B., Tang, S., Li, Y., et al., 2015b. Characteristics of Neoproterozoic–Early Mesozoic Multiphase Orogenic Activities of Eastern Jiangnan Orogen. Geology in China, 42(1): 33–50 (in Chinese with English Abstract)Google Scholar
  74. Xu, X. B., Tang, S., Lin, S. F., 2016a. Detrital Provenance of Early Mesozoic Basins in the Jiangnan Domain, South China: Paleogeographic and Geodynamic Implications. Tectonophysics, 675: 141–158. https://doi.org/10.13039/501100001809CrossRefGoogle Scholar
  75. Xu, X. B., Tang, S., Lin, S. F., 2016b. Paleostress Inversion of Fault-Slip Data from the Jurassic to Cretaceous Huangshan Basin and Implications for the Tectonic Evolution of Southeastern China. Journal of Geodynamics, 98: 31–52. https://doi.org/10.13039/501100001809CrossRefGoogle Scholar
  76. Xu, X. B., Tang, S., Lin, S. F., 2016c. Two Kinds of Shear Senses and Tectonic Implication of the Jingdezhen Ductile Strike-Slip Shear Zone, Northern Jiangxi Province. Geological Journal of China Universities, 22(2): 308–316 (in Chinese with English Abstract)Google Scholar
  77. Xu, X. B., Xue, D. J., Li, Y., et al., 2014. Neoproterozoic Sequences along the Dexing-Huangshan Fault Zone in the Eastern Jiangnan Orogen, South China: Geochronological and Geochemical Constrains. Gondwana Research, 25(1): 368–382. https://doi.org/10.13039/501100004613CrossRefGoogle Scholar
  78. Xu, X. B., Zhang, Y. Q., Shu, L. S., et al., 2011. LA-ICP-MS U-Pb and 40Ar/39Ar Geochronology of the Sheared Metamorphic Rocks in the Wuyishan: Constraints on the Timing of Early Paleozoic and Early Mesozoic Tectono-Thermal Events in SE China. Tectonophysics, 501(1/2/3/4): 71–86. https://doi.org/10.1016/j.tecto.2011.01.014Google Scholar
  79. Xu, Y. J., Du, Y. S., Cawood, P. A., et al., 2012. Detrital Zircon Provenance of Upper Ordovician and Silurian Strata in the Northeastern Yangtze Block: Response to Orogenesis in South China. Sedimentary Geology, 267/268: 63–72. https://doi.org/10.1016/j.sedgeo.2012.05.009CrossRefGoogle Scholar
  80. Yang, M. G., Wu, F. J., Song, Z. R., et al., 2015. North Jiangxi: A Geological Window of South China. Acta Geologica Sinica, 89(2): 222–233 (in Chinese with English Abstract)Google Scholar
  81. Yin, C. Q., Lin, S. F., Davis, D. W., et al., 2013. Tectonic Evolution of the Southeastern Margin of the Yangtze Block: Constraints from SHRIMP U-Pb and LA-ICP-MS Hf Isotopic Studies of Zircon from the Eastern Jiangnan Orogenic Belt and Implications for the Tectonic Interpretation of South China. Precambrian Research, 236: 145–156. https://doi.org/10.1016/j.precamres.2013.07.022CrossRefGoogle Scholar
  82. Yu, M. G., Xing, G. F., Zhang, Y. J., et al., 2009. Geochronology, Geochemistry and Genesis of Yanshanian Granites in the Zhanggongshan Area. Bulletin of Mineralogy, Petrology and Geochemistry, 28(Suppl.): 128 (in Chinese)Google Scholar
  83. Yu, X. Q., Wang, D. E., Jiang, D. Z., et al., 2011. Deformation Stages and Ar-Ar Age Data of the Wan-Zhe-Gan Tectonic Zone, Southeast China, and Their Tectonic Significance. Acta Geologica Sinica—English Edition, 85(6): 1373–1389. https://doi.org/10.1111/j.1755-6724.2011.00593.xCrossRefGoogle Scholar
  84. Yuan, X. C., Hua, J. R., 2011. 3D Lithospheric Structure of South China. Geology in China, 38(1): 1–19 (in Chinese with English Abstract)Google Scholar
  85. Zhang, C. L., Santosh, M., Zou, H. B., et al., 2013. The Fuchuan Ophiolite in Jiangnan Orogen: Geochemistry, Zircon U-Pb Geochronology, Hf Isotope and Implications for the Neoproterozoic Assembly of South China. Lithos, 179: 263–274. https://doi.org/10.1016/j.lithos.2013.08.015CrossRefGoogle Scholar
  86. Zhang, C. L., Zou, H. B., Zhu, Q. B., et al., 2015. Late Mesoproterozoic to Early Neoproterozoic Ridge Subduction along Southern Margin of the Jiangnan Orogen: New Evidence from the Northeastern Jiangxi Ophiolite (NJO), South China. Precambrian Research, 268: 1–15. https://doi.org/10.13039/501100004613CrossRefGoogle Scholar
  87. Zhang, S. B., Wu, R. X., Zheng, Y. F., 2012. Neoproterozoic Continental Accretion in South China: Geochemical Evidence from the Fuchuan Ophiolite in the Jiangnan Orogen. Precambrian Research, 220/221: 45–64. https://doi.org/10.1016/j.precamres.2012.07.010CrossRefGoogle Scholar
  88. Zhang, Y. J., Liao, S. B., Zhou, X. H., et al., 2012. Characteristics of Zhangyuan Structure Belt in the Northern Margin of Jiangnan Orogen. Acta Geologica Sinica, 86(12): 1905–1916 (in Chinese with English Abstract)Google Scholar
  89. Zhang, Y. Z., Wang, Y. J., Geng, H. Y., et al., 2013. Early Neoproterozoic (∼850 Ma) Back-Arc Basin in the Central Jiangnan Orogen (Eastern South China): Geochronological and Petrogenetic Constraints from Meta-Basalts. Precambrian Research, 231: 325–342. https://doi.org/10.1016/j.precamres.2013.03.016CrossRefGoogle Scholar
  90. Zhao, C. H., He, K. Z., Tai, D. Q., et al., 1997. 40Ar/39Ar Ages of Major Igneous in Northeastern Jiangxi Province. Earth Science—Journal of China University of Geosciences, 22(3): 257–260 (in Chinese with English Abstract)Google Scholar
  91. Zhao, G. C., 2015. Jiangnan Orogen in South China: Developing from Divergent Double Subduction. Gondwana Research, 27(3): 1173–1180. https://doi.org/10.13039/501100001809CrossRefGoogle Scholar
  92. Zhao, J. H., Asimow, P. D., 2014. Neoproterozoic Boninite-Series Rocks in South China: A Depleted Mantle Source Modified by Sediment-Derived Melt. Chemical Geology, 388: 98–111. https://doi.org/10.13039/501100001809CrossRefGoogle Scholar
  93. Zhao, J. H., Zhou, M. F., Yan, D. P., et al., 2011. Reappraisal of the Ages of Neoproterozoic Strata in South China: No Connection with the Grenvillian Orogeny. Geology, 39(4): 299–302. https://doi.org/10.1130/g31701.1CrossRefGoogle Scholar
  94. Zhao, P., Jiang, Y. H., Liao, S. Y., et al., 2010. SHRIMP Zircon U-Pb Age, Sr-Nd-Hf Isotopic Geochemistry and Petrogenesis of the Ehu Pluton in Northeastern Jiangxi Province. Geological Journal of China Universities, 16(2): 218–225 (in Chinese with English Abstract)Google Scholar
  95. Zhao, Y. Y., Zheng, Y. F., 2011. Record and Time of Neoproterozoic Glaciations on Earth. Acta Petrologica Sinica, 27(2): 545–565 (in Chinese with English Abstract)Google Scholar
  96. Zheng, Y. F., Wu, R. X., Wu, Y. B., et al., 2008. Rift Melting of Juvenile Arc-Derived Crust: Geochemical Evidence from Neoproterozoic Volcanic and Granitic Rocks in the Jiangnan Orogen, South China. Precambrian Research, 163(3/4): 351–383. https://doi.org/10.1016/j.precamres.2008.01.004CrossRefGoogle Scholar
  97. Zhou, X. H., Gao, T. S., Ma, X., et al., 2014. Study on Geochronology and Structural Properties of Pillow Basalts in Zhangyuan Region, Eastern Section of the Jiangnan Orogen. Resources Survey and Environment, 35(4): 235–244 (in Chinese with English Abstract)Google Scholar
  98. Zhu, G., Liu, G. S., 2000. Basic Characteristics and Mesozoic Orogenic Process of the Jiangnan Intracontinental Orogenic Belt in Southern Anhui. Geotectonica et Metallogenia, 24(2): 103–111 (in Chinese with English Abstract)Google Scholar

Copyright information

© China University of Geosciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Earth SciencesChina University of GeosciencesWuhanChina
  2. 2.Department of Earth and Environmental SciencesUniversity of WaterlooWaterlooCanada
  3. 3.School of Resources and EnvironmentHefei University of TechnologyHefeiChina
  4. 4.No. 266 Geological PartyNuclear Industry Geological Bureau of Jiangxi ProvinceNanchangChina
  5. 5.State Key Laboratory for Nuclear Resources and EnvironmentEast China Institute of TechnologyNanchangChina

Personalised recommendations