Skip to main content
Log in

Crustal Accretion and Reworking within the Khanka Massif: Evidence from Hf Isotopes of Zircons in Phanerozoic Granitoids

  • Petrology and Mineral Deposits
  • Published:
Journal of Earth Science Aims and scope Submit manuscript

This article has been updated

Abstract

This paper presents a synthesis and analysis of geochronological, geochemical, and zircon Hf isotopic data of Phanerozoic granitoids within the Khanka massif, with the aim of revealing the accretion and reworking processes of continental crust within the massif. Zircon U-Pb dating indicates that Phanerozoic granitic magmatism within the Khanka massif can be subdivided into eight stages: Late Cambrian, Middle–Late Ordovician, Middle Silurian, Late Carboniferous, Early Permian, Middle–Late Permian to Early Triassic, Late Triassic–Early Jurassic, and Early Cretaceous. The zircon Hf isotopic compositions reveal that crustal accretionary events took place mainly in the Mesoproterozoic and Neoproterozoic. Through time, the zircon εHf(t) values gradually increase, indicating that the Phanerozoic granitic magmas were derived from the melting of progressively less ancient and more juvenile crust. The zircon εHf(t) values exhibit a gradual decrease with the increases in latitude, which implies that the amounts of ancient crustal components within the lower continental crust of the Khanka massif increased from south to north. At the same latitude range, the zircon Hf isotopic compositions also display some variations. We conclude, therefore, that significant horizontal and vertical heterogeneities existed in the lower continental crust of the Khanka massif during the Phanerozoic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Change history

  • 26 June 2021

    There is an error found in ORCID on original upload.

References Cited

  • Allègre, C. J., Rousseau, D., 1984. The Growth of the Continent through Geological Time Studied by Nd Isotope Analysis of Shales. Earth and Planetary Science Letters, 67(1): 19–34. https://doi.org/10.1016/0012-821x(84)90035-9

    Article  Google Scholar 

  • Armstrong, R. A., 1981. Radiogenic Isotopes: The Case for Crustal Recycling on a Near-Steady-State No-Continental-Growth Earth. Philosophical Transactions of the Royal Society of London, Series A, Mathematical and Physical Sciences, 301(1461): 443–472. https://doi.org/10.1098/rsta.1981.0122

    Article  Google Scholar 

  • Barnes, G. L., 2003. Origins of the Japanese Islands: The New “Big Picture”. Japan Review, 15: 3–50

    Google Scholar 

  • Belousova, E. A., Kostitsyn, Y. A., Griffin, W. L., et al., 2010. The Growth of the Continental Crust: Constraints from Zircon Hf-Isotope Data. Lithos, 119(3/4): 457–466. https://doi.org/10.1016/j.lithos.2010.07.024

    Article  Google Scholar 

  • BGMRJ (Bureau of Geology and Mineral Resources of Jilin Province), 1997. Stratigraphy of Jilin Province. China University of Geosciences Press, Wuhan. 10–13 (in Chinese)

    Google Scholar 

  • Cao, H. H., Xu, W. L., Pei, F. P., et al., 2011. Permian Tectonic Evolution in Southwestern Khanka Massif: Evidence from Zircon U-Pb Chronology, Hf Isotope and Geochemistry of Gabbro and Diorite. Acta Geologica Sinica—English Edition, 85(6): 1390–1402

    Article  Google Scholar 

  • Cao, H. H., Xu, W. L., Pei, F. P., et al., 2013. Zircon U-Pb Geochronology and Petrogenesis of the Late Paleozoic–Early Mesozoic Intrusive Rocks in the Eastern Segment of the Northern Margin of the North China Block. Lithos, 170/171: 191–207. https://doi.org/10.1016/j.lithos.2013.03.006

    Article  Google Scholar 

  • Cawood, P. A., Wang, Y. J., Xu, Y. J., et al., 2013. Locating South China in Rodinia and Gondwana: A Fragment of Greater India Lithosphere?. Geology, 41(8): 903–906. https://doi.org/10.1130/g34395.1

    Article  Google Scholar 

  • Condie, K. C., Aster, R. C., 2010. Episodic Zircon Age Spectra of Orogenic Granitoids: The Supercontinent Connection and Continental Growth. Precambrian Research, 180(3/4): 227–236. https://doi.org/10.1016/j.precamres.2010.03.008

    Article  Google Scholar 

  • Condie, K. C., Bickford, M. E., Aster, R. C., et al., 2011. Episodic Zircon Ages, Hf Isotopic Composition, and the Preservation Rate of Continental Crust. Geological Society of America Bulletin, 123(5/6): 951–957. https://doi.org/10.1130/b30344.1

    Article  Google Scholar 

  • Davies, G., Gledhill, A., Hawkesworth, C., 1985. Upper Crustal Recycling in Southern Britain: Evidence from Nd and Sr Isotopes. Earth and Planetary Science Letters, 75(1): 1–12

    Article  Google Scholar 

  • DePaolo, D. J., Linn, A. M., Schubert, G., 1991. The Continental Crustal Age Distribution: Methods of Determining Mantle Separation Ages from Sm-Nd Isotopic Data and Application to the Southwestern United States. Journal of Geophysical Research, 96(B2): 2071–2088. https://doi.org/10.1029/90jb02219

    Article  Google Scholar 

  • Dhuime, B., Hawkesworth, C. J., Cawood, P. A., et al., 2012. A Change in the Geodynamics of Continental Growth 3Billion Years Ago. Science, 335(6074): 1334–1336. https://doi.org/10.1126/science.1216066

    Article  Google Scholar 

  • Dhuime, B., Hawkesworth, C. J., Cawood, P. A., 2011. When Continents Formed. Science, 331(6014): 154–155. https://doi.org/10.1126/science.1201245

    Article  Google Scholar 

  • Dong, Y., Ge, W. C., Yang, H., et al., 2014. Geochronology and Geochemistry of Early Cretaceous Volcanic Rocks from the Baiyingaolao Formation in the Central Great Xing’an Range, NE China, and Its Tectonic Implications. Lithos, 205: 168–184. https://doi.org/10.13039/501100001809

    Article  Google Scholar 

  • Faure, M., Natal’in, B. A., Monié, P., et al., 1995. Tectonic Evolution of the Anuy Metamorphic Rocks (Sikhote Alin, Russia) and their Place in the Mesozoic Geodynamic Framework of East Asia. Tectonophysics, 241(3/4): 279–301. https://doi.org/10.1016/0040-1951(94)00186-d

    Article  Google Scholar 

  • Goodwin, A. M., 1996. Principles of Precambrian Geology. Academic Press, London. 281–318

    Google Scholar 

  • Griffin, W. L., Pearson, N. J., Belousova, E., et al., 2000. The Hf Isotope Composition of Cratonic Mantle: LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133–147. https://doi.org/10.1016/s0016-7037(99)00343-9

    Article  Google Scholar 

  • Griffin, W. L., Wang, X., Jackson, S. E., et al., 2002. Zircon Chemistry and Magma Mixing, SE China: In-situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes. Lithos, 61(3/4): 237–269. https://doi.org/10.1016/s0024-4937(02)00082-8

    Article  Google Scholar 

  • Guo, P., Liu, C. Y., Wang, J. Q., et al., 2017. Considerations on the Application of Detrital-Zircon Geochronology to Sedimentary Provenance Analysis. Acta Sedimentologica Sinica, 35(1): 46–55 (in Chinese with English Abstract)

    Google Scholar 

  • Hawkesworth, C. J., Kemp, A. I. S., 2006. The Differentiation and Rates of Generation of the Continental Crust. Chemical Geology, 226(3/4): 134–143. https://doi.org/10.1016/j.chemgeo.2005.09.017

    Article  Google Scholar 

  • HBGMR (Heilongjiang Bureau of Geology Mineral Resources), 1993. Regional Geology of Heilongjiang Province. Geological Publishing House, Beijing. 1–734 (in Chinese with English Abstract)

    Google Scholar 

  • Hurley, P. M., Rand, J. R., 1969. Pre-Drift Continental Nuclei. Science, 164(3885): 1229–1242. https://doi.org/10.1126/science.164.3885.1229

    Article  Google Scholar 

  • Jacobsen, S. B., 1988. Isotopic and Chemical Constraints on Mantle-Crust Evolution. Geochimica et Cosmochimica Acta, 52(6): 1341–1350. https://doi.org/10.1016/0016-7037(88)90205-0

    Article  Google Scholar 

  • Jahn, B. M., Capdevila, R., Liu, D. Y., et al., 2004. Sources of Phanerozoic Granitoids in the Transect Bayanhongor-Ulaan Baatar, Mongolia: Geochemical and Nd Isotopic Evidence, and Implications for Phanerozoic Crustal Growth. Journal of Asian Earth Sciences, 23(5): 629–653. https://doi.org/10.1016/s1367-9120(03)00125-1

    Article  Google Scholar 

  • Jahn, B. M., Wu, F. Y., Chen, B., 2000a. Massive Granitoid Generation in Central Asia: Nd Isotopic Evidence and Implication for Continental Growth in the Phanerozoic. Episodes, 23(2): 82–92

    Article  Google Scholar 

  • Jahn, B. M., Wu, F. Y., Hong, D. W., 2000b. Important Crustal Growth in the Phanerozoic: Isotopic Evidence of Granitoids from East-Central Asia. Journal of Earth System Science, 109(1): 5–20. https://doi.org/10.1007/bf02719146

    Article  Google Scholar 

  • Jahn, B. M., Wu, F. Y., Chen, B., 2000c. Granitoids of the Central Asian Orogenic Belt and Continental Growth in the Phanerozoic. Transactions of the Royal Society of Edinburgh: Earth Sciences, 91(1/2): 181–193. https://doi.org/10.1017/s0263593300007367

    Article  Google Scholar 

  • Jahn, B. M., Valui, G., Kruk, N., et al., 2015. Emplacement Ages, Geochemical and Sr-Nd-Hf Isotopic Characterization of Mesozoic to Early Cenozoic Granitoids of the Sikhote-Alin Orogenic Belt, Russian Far East: Crustal Growth and Regional Tectonic Evolution. Journal of Asian Earth Sciences, 111: 872–918. https://doi.org/10.1016/j.jseaes.2015.08.012

    Article  Google Scholar 

  • Ji, W. Q., Xu, W. L., Yang, D. B., et al., 2007. Chronology and Geochemistry of Volcanic Rocks in the Cretaceous Suifenhe Formation in Eastern Heilongjiang, China. Acta Geologica Sinica—English Edition, 81(2): 266–277

    Article  Google Scholar 

  • Jia, D. C., Hu, R. Z., Lu, Y., et al., 2004. Collision Belt between the Khanka Block and the North China Block in the Yanbian Region, Northeast China. Journal of Asian Earth Sciences, 23(2): 211–219

    Article  Google Scholar 

  • Jing, H. X., Sun, D. Y., Gou, J., et al., 2015. Chronology, Geochemistry and Hf Isotope of Granite from Southern Xingkai Block. Earth Science— Journal of China University of Geosciences, 40(6): 982–994 (in Chinese with English Abstract)

    Article  Google Scholar 

  • Khanchuk, A. I., Sakhno, V. G., Alenicheva, A. A., 2010. First SHRIMP U-Pb Zircon Dating of Magmatic Complexes in the Southwestern Primor’e Region. Doklady Earth Sciences, 431(2): 424–428. https://doi.org/10.1134/s1028334x10040033

    Article  Google Scholar 

  • Khanchuk, A. I., 2001. Pre-Neogene Tectonics of the Sea of Japan Region: A View from the Russian Side. Earth Science (Chikyu Kagaku), 55(5): 275–291

    Google Scholar 

  • Kovalenko, S. V., 2006. State Geological Map of Russian Federation, Scale 1: 1 000 000 (3rd Generation). Far East Ser. Sheet L-52 (Boundary), L-53 (Khanka), K-53 (Nakhodka) (in Russian)

    Google Scholar 

  • Kröner, A., Kovach, V., Belousova, E., et al., 2014. Reassessment of Continental Growth during the Accretionary History of the Central Asian Orogenic Belt. Gondwana Research, 25(1): 103–125. https://doi.org/10.13039/501100001659

    Article  Google Scholar 

  • Le Maitre, R. W., 1989. A Classification of Igneous Rocks and Glossary of Terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Blackwell Scientific Publications, Oxford. 193

    Google Scholar 

  • Li, J. Y., Niu, B. G., Song, B., et al., 1999. Crustal Formation and Evolution of Nothern Changbai Mountains. Geological Publishing House, Beijing. 1–137 (in Chinese with English Abstract)

    Google Scholar 

  • Li, J. Y., 2006. Permian Geodynamic Setting of Northeast China and Adjacent Regions: Closure of the Paleo-Asian Ocean and Subduction of the Paleo-Pacific Plate. Journal of Asian Earth Sciences, 26(3/4): 207–224. https://doi.org/10.1016/j.jseaes.2005.09.001

    Article  Google Scholar 

  • Li, Y., Xu, W. L., Wang, F., et al., 2014. Geochronology and Geochemistry of Late Paleozoic Volcanic Rocks on the Western Margin of the Songnen-Zhangguangcai Range Massif, NE China: Implications for the Amalgamation History of the Xing’an and Songnen-Zhangguangcai Range Massifs. Lithos, 205: 394–410. https://doi.org/10.13039/501100001809

    Article  Google Scholar 

  • Liu, K., Zhang, J. J., Wilde, S. A., et al., 2017. Initial Subduction of the Paleo-Pacific Oceanic Plate in NE China: Constraints from Whole-Rock Geochemistry and Zircon U-Pb and Lu-Hf Isotopes of the Khanka Lake Granitoids. Lithos, 274/275: 254–270. https://doi.org/10.1016/j.lithos.2016.12.022

    Article  Google Scholar 

  • Lu, L. Z., Xu, W. L., 2011. Petrography. Geological Publishing House, Beijing. 377 (in Chinese)

    Google Scholar 

  • Luan, J. P., Xu, W. L., Wang, F., et al., 2017. Age and Geochemistry of Neoproterozoic Granitoids in the Songnen-Zhangguangcai Range Massif, NE China: Petrogenesis and Tectonic Implications. Journal of Asian Earth Sciences, 148: 265–276. https://doi.org/10.13039/501100001809

    Article  Google Scholar 

  • McLennan, S. M., 2001. Relationships between the Trace Element Composition of Sedimentary Rocks and Upper Continental Crust. Geochemistry, Geophysics, Geosystems, 2(4): 203–236. https://doi.org/10.1029/2000gc000109

    Article  Google Scholar 

  • Meng, E., Xu, W. L., Pei, F. P., et al., 2010. Detrital-Zircon Geochronology of Late Paleozoic Sedimentary Rocks in Eastern Heilongjiang Province, NE China: Implications for the Tectonic Evolution of the Eastern Segment of the Central Asian Orogenic Belt. Tectonophysics, 485(1/2/3/4): 42–51. https://doi.org/10.1016/j.tecto.2009.11.015

    Article  Google Scholar 

  • Meng, E., Xu, W. L., Yang, D. B., et al., 2011. Zircon U-Pb Chronology, Geochemistry of Mesozoic Volcanic Rocks from the Lingquan Basin in Manzhouli Area, and Its Tectonic Implications. Acta Petrologica Sinica, 27(4): 1209–1226 (in Chinese with English Abstract)

    Google Scholar 

  • Natal’in, B., 1993. History and Modes of Mesozoic Accretion in Southeastern Russia. The Island Arc, 2(1): 15–34

    Article  Google Scholar 

  • Nowell, G. M., Kempton, P. D., Noble, S. R., et al., 1998. High Precision Hf Isotope Measurements of MORB and OIB by Thermal Ionisation Mass Spectrometry: Insights into the Depleted Mantle. Chemical Geology, 149(3/4): 211–233. https://doi.org/10.1016/s0009-2541(98)00036-9

    Article  Google Scholar 

  • O’Nions, R. K., Hamilton, P. J., Hooker, P. J., 1983. A Nd Isotope Investigation of Sediments Related to Crustal Development in the British Isles. Earth and Planetary Science Letters, 63(2): 229–240. https://doi.org/10.1016/0012-821x(83)90039-0

    Article  Google Scholar 

  • Rudnick, R. L., 1995. Making Continental Crust. Nature, 378(6557): 571–578. https://doi.org/10.1038/378571a0

    Article  Google Scholar 

  • Şengör, A. M. C., Natal’in, B. A., 1996. Paleotectonics of Asia: Fragments of a Synthesis. Cambridge University Press, Cambridge. 486–640

    Google Scholar 

  • Şengör, A. M. C., Natal’in, B. A., Burtman, V. S., 1993. Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia. Nature, 364(6435): 299–307. https://doi.org/10.1038/364299a0

    Article  Google Scholar 

  • Shao, J. A., Tang, K. D., 1995. Terranes in Northeast China and Evolution of Northeast Asia Continental Margin. Seismology Publishing House, Beijing. 185 (in Chinese)

    Google Scholar 

  • Shcheka, S. A., Ishiwatari, A., Vrzhosek, A. A., 2001. Geology and Petrology of Cambrian Khanka Ophiolite in Primorye (Far East Russia) with Notes on Its Manganese-Rich Chromian Spinel. Earth Science (Chikyu Kagaku), 55(5): 265–274. https://doi.org/10.15080/agcjchikyukagaku.55.5_265

    Google Scholar 

  • Sorokin, A. A., Kotov, A. B., Sal’nikova, E. B., et al., 2010. Granitoids of the Tyrma-Bureya Complex in the Northern Bureya-Jiamusi Superterrane of the Central Asian Fold Belt: Age and Geodynamic Setting. Russian Geology and Geophysics, 51(5): 563–571. https://doi.org/10.1016/j.rgg.2010.04.011

    Article  Google Scholar 

  • Sun, C. Y., Tang, J., Xu, W. L., et al., 2017. Crustal Accretion and Reworking Processes of Micro-Continental Massifs within Orogenic Belt: A Case Study of the Erguna Massif, NE China. Science China Earth Sciences, 60(7): 1256–1267. https://doi.org/10.1007/s11430-016-9033-5

    Article  Google Scholar 

  • Sun, D. Y., Gou, J., Wang, T. H., et al., 2013. Geochronological and Geochemical Constraints on the Erguna Massif Basement, NE China-Subduction History of the Mongol-Okhotsk Oceanic Crust. International Geology Review, 55(14): 1801–1816. https://doi.org/10.1080/00206814.2013.804664

    Article  Google Scholar 

  • Sun, J. G., Chen, L., Zhao, J. K., et al., 2008. SHRIMP U-Pb Dating of Zircon from Late Yanshanian Granitic Complex in Xiaoxinancha Gold-Rich Copper Orefield of Yanbian and Its Geological Implications. Mineral Deposits, 27(3): 319–328 (in Chinese with English Abstract)

    Google Scholar 

  • Tang, J., Xu, W. L., Wang, F., et al., 2015. Geochronology, Geochemistry, and Deformation History of Late Jurassic–Early Cretaceous Intrusive Rocks in the Erguna Massif, NE China: Constraints on the Late Mesozoic Tectonic Evolution of the Mongol-Okhotsk Orogenic Belt. Tectonophysics, 658: 91–110. https://doi.org/10.13039/501100001809

    Article  Google Scholar 

  • Tang, J., Xu, W. L., Wang, F., et al., 2016. Early Mesozoic Southward Subduction History of the Mongol-Okhotsk Oceanic Plate: Evidence from Geochronology and Geochemistry of Early Mesozoic Intrusive Rocks in the Erguna Massif, NE China. Gondwana Research, 31: 218–240. https://doi.org/10.13039/501100001809

    Article  Google Scholar 

  • Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution, An Examination of the Geochemical Record Preserved in Sedimentary Rocks. Blackwell Scientific Publications, Oxford. 312

    Google Scholar 

  • Tsutsumi, Y., Yokoyama, K., Kasatkin, S. A., et al., 2014. Zircon U-Pb Age of Granitoids in the Maizuru Belt, Southwest Japan and the Southernmost Khanka Massif, Far East Russia. Journal of Mineralogical and Petrological Sciences, 109(2): 97–102. https://doi.org/10.2465/jmps.131017

    Article  Google Scholar 

  • Wang, C. Y., Campbell, I. H., Allen, C. M., et al., 2009. Rate of Growth of the Preserved North American Continental Crust: Evidence from Hf and O Isotopes in Mississippi Detrital Zircons. Geochimica et Cosmochimica Acta, 73(3): 712–728. https://doi.org/10.1016/j.gca.2008.10.037

    Article  Google Scholar 

  • Wang, C. Y., Campbell, I. H., Stepanov, A. S., et al., 2011. Growth Rate of the Preserved Continental Crust: II. Constraints from Hf and O Isotopes in Detrital Zircons from Greater Russian Rivers. Geochimica et Cosmochimica Acta, 75(5): 1308–1345. https://doi.org/10.1016/j.gca.2010.12.010

    Google Scholar 

  • Wang, F., Xu, W. L., Meng, E., et al., 2012a. Early Paleozoic Amalgamation of the Songnen-Zhangguangcai Range and Jiamusi Massifs in the Eastern Segment of the Central Asian Orogenic Belt: Geochronological and Geochemical Evidence from Granitoids and Rhyolites. Journal of Asian Earth Sciences, 49: 234–248. https://doi.org/10.1016/j.jseaes.2011.09.022

    Article  Google Scholar 

  • Wang, F., Xu, W. L., Gao, F. H., et al., 2012b. Tectonic History of the Zhangguangcailing Group in Eastern Heilongjiang Province, NE China: Constraints from U-Pb Geochronology of Detrital and Magmatic Zircons. Tectonophysics, 566/567: 105–122. https://doi.org/10.1016/j.tecto.2012.07.018

    Google Scholar 

  • Wang, F., Xu, W. L., Ge, W. C., et al., 2016. The Offset Distance of the Dunhua-Mishan Fault: Constraints from Paleozoic-Mesozoic Magmatism within the Songnen-Zhangguangcai Range, Jiamusi and Khanka Massifs. Acta Petrologica Sinica, 32 (4): 1129–1140 (in Chinese with English Abstract)

    Google Scholar 

  • Wang, F., Xu, W. L., Xu, Y. G., et al., 2015. Late Triassic Bimodal Igneous Rocks in Eastern Heilongjiang Province, NE China: Implications for the Initiation of Subduction of the Paleo-Pacific Plate beneath Eurasia. Journal of Asian Earth Sciences, 97: 406–423. https://doi.org/10.13039/501100001809

    Article  Google Scholar 

  • Wang, Z. W., Xu, W. L., Pei, F. P., et al., 2017. Geochronology and Geochemistry of Early Paleozoic Igneous Rocks from the Zhangguangcai Range, Northeastern China: Constraints on Tectonic Evolution of the Eastern Central Asian Orogenic Belt. Lithosphere, 9(5): 803–827. https://doi.org/10.1130/l639.1

    Article  Google Scholar 

  • Windley, B. F., Alexeiev, D., Xiao, W., et al., 2007. Tectonic Models for Accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164(1): 31–47. https://doi.org/10.1144/0016-76492006-022

    Article  Google Scholar 

  • Windley, B. F., Allen, M. B., Zhang, C., et al., 1990. Paleozoic Accretion and Cenozoic Redeformation of the Chinese Tien Shan Range, Central Asia. Geology, 18(2): 128–131

    Article  Google Scholar 

  • Wu, F. Y., Jahn, B. M., Wilde, S. A., et al., 2003. Highly Fractionated I-Type Granites in NE China (II): Isotopic Geochemistry and Implications for Crustal Growth in the Phanerozoic. Lithos, 67(3/4): 191–204. https://doi.org/10.1016/s0024-4937(03)00015-x

    Article  Google Scholar 

  • Wu, F. Y., Sun, D. Y., Ge, W. C., et al., 2011. Geochronology of the Phanerozoic Granitoids in Northeastern China. Journal of Asian Earth Sciences, 41(1): 1–30. https://doi.org/10.1016/j.jseaes.2010.11.014

    Article  Google Scholar 

  • Wu, F. Y., Sun, D. Y., Li, H. M., et al., 2002. A-Type Granites in Northeastern China: Age and Geochemical Constraints on Their Petrogenesis. Chemical Geology, 187(1/2): 143–173. https://doi.org/10.1016/s0009-2541(02)00018-9

    Article  Google Scholar 

  • Wu, F. Y., Sun, D. Y., Lin, Q., 1999. Petrogenesis of the Phanerozoic Granites and Crustal Growth in Northeast China. Acta Petrologica Sinica, 15(2): 181–189 (in Chinese with English Abstract)

    Google Scholar 

  • Wu, F. Y., Zhao, G. C., Sun, D. Y., et al., 2007. The Hulan Group: Its Role in the Evolution of the Central Asian Orogenic Belt of NE China. Journal of Asian Earth Sciences, 30(3/4): 542–556. https://doi.org/10.1016/j.jseaes.2007.01.003

    Article  Google Scholar 

  • Xiao, W. J., Windley, B. F., Hao, J., et al., 2003. Accretion Leading to Collision and the Permian Solonker Suture, Inner Mongolia, China: Termination of the Central Asian Orogenic Belt. Tectonics, 22(6): 8–1–8-6. https://doi.org/10.1029/2002tc001484

    Article  Google Scholar 

  • Xiao, W. J., Zhang, L. C., Qin, K. Z., et al., 2004. Paleozoic Accretionary and Collisional Tectonics of the Eastern Tianshan (China): Implications for the Continental Growth of Central Asia. American Journal of Science, 304(4): 370–395. https://doi.org/10.2475/ajs.304.4.370

    Article  Google Scholar 

  • Xu, M. J., Xu, W. L., Wang, F., et al., 2013. Geochronology and Geochemistry of the Early Jurassic Granitoids in the Central Lesser Xing’an Range, NE China and Its Tectonic Implications. Acta Petrologica Sinica, 29: 354–368 (in Chinese with English Abstract)

    Google Scholar 

  • Xu, T., Xu, W. L., Wang, F., et al., 2018. Geochronology and Geochemistry of Early Paleozoic Intrusive Rocks from the Khanka Massif in the Russian far East: Petrogenesis and Tectonic Implications. Lithos, 300/301: 105–120. https://doi.org/10.13039/https://doi.org/10.13039/501100001809

    Article  Google Scholar 

  • Xu, W. L., Ji, W. Q., Pei, F. P., et al., 2009. Triassic Volcanism in Eastern Heilongjiang and Jilin Provinces, NE China: Chronology, Geochemistry, and Tectonic Implications. Journal of Asian Earth Sciences, 34(3): 392–402. https://doi.org/10.1016/j.jseaes.2008.07.001

    Article  Google Scholar 

  • Xu, W. L., Pei, F. P., Wang, F., et al., 2013. Spatial-temporal Relationships of Mesozoic Volcanic Rocks in NE China: Constraints on Tectonic Overprinting and Transformations between Multiple Tectonic Regimes. Journal of Asian Earth Sciences, 74: 167–193. https://doi.org/10.1016/j.jseaes.2013.04.003

    Article  Google Scholar 

  • Yakubchuk, A., 2004. Architecture and Mineral Deposit Settings of the Altaid Orogenic Collage: A Revised Model. Journal of Asian Earth Sciences, 23(5): 761–779. https://doi.org/10.1016/j.jseaes.2004.01.006

    Article  Google Scholar 

  • Yakubchuk, A., 2002. The Baikalide-Altaid, Transbaikal-Mongolian and North Pacific Orogenic Collages: Similarity and Diversity of Structural Patterns and Metallogenic Zoning. Geological Society, London, Special Publications, 204(1): 273–297. https://doi.org/10.1144/gsl.sp.2002.204.01.16

    Article  Google Scholar 

  • Yang, H., Ge, W. C., Zhao, G. C., et al., 2015a. Early Permian–Late Triassic Granitic Magmatism in the Jiamusi-Khanka Massif, Eastern Segment of the Central Asian Orogenic Belt and Its Implications. Gondwana Research, 27(4): 1509–1533. https://doi.org/10.13039/501100001809

    Article  Google Scholar 

  • Yang, H., Ge, W. C., Zhao, G. C., et al., 2015b. Late Triassic Intrusive Complex in the Jidong Region, Jiamusi-Khanka Block, NE China: Geochemistry, Zircon U-Pb Ages, Lu-Hf Isotopes, and Implications for Magma Mingling and Mixing. Lithos, 224/225: 143–159. https://doi.org/10.13039/501100001809

    Article  Google Scholar 

  • Yang, J. H., Wu, F. Y., Shao, J. A., et al., 2006. Constraints on the Timing of Uplift of the Yanshan Fold and Thrust Belt, North China. Earth and Planetary Science Letters, 246(3/4): 336–352. https://doi.org/10.1016/j.epsl.2006.04.029

    Article  Google Scholar 

  • Yu, J. J., Wang, F., Xu, W. L., et al., 2012. Early Jurassic Mafic Magmatism in the Lesser Xing’an-Zhangguangcai Range, NE China, and Its Tectonic Implications: Constraints from Zircon U-Pb Chronology and Geochemistry. Lithos, 142/143: 256–266. https://doi.org/10.1016/j.lithos.2012.03.016

    Article  Google Scholar 

  • Zhao, Y. D., Chi, X. G., Che, J. Y., et al., 2009. Geochemical Characteristics and Tectonic Setting of the Late Triassic Granites in Yanbian-Dongning Area. Journal of Jilin University (Earth Science Edition), 39(3): 425–434 (in Chinese with English Abstract)

    Google Scholar 

  • Zhou, J. B., Wilde, S. A., Zhao, G. C., et al., 2010. Was the Easternmost Segment of the Central Asian Orogenic Belt Derived from Gondwana or Siberia: An Intriguing Dilemma?. Journal of Geodynamics, 50(3/4): 300–317. https://doi.org/10.1016/j.jog.2010.02.004

    Article  Google Scholar 

Download references

Acknowledgments

We thank the staff of the State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan, for their advice and assistance during U-Pb zircon dating and the staff of the Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China for help in the Hf isotope analyses. This work was financially supported by the National Natural Science Foundation of China (Nos. 41772047 and 41330206), the Graduate Innovation Fund of Jilin University (No. 2017034), and the Opening Foundation of the State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences (Wuhan) (No. GPMR201503). The final publication is available at Springer via https://doi.org/10.1007/s12583-017-0950-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenliang Xu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Xu, W., Sun, C. et al. Crustal Accretion and Reworking within the Khanka Massif: Evidence from Hf Isotopes of Zircons in Phanerozoic Granitoids. J. Earth Sci. 29, 255–264 (2018). https://doi.org/10.1007/s12583-017-0950-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-017-0950-2

Key words

Navigation