Journal of Earth Science

, Volume 29, Issue 2, pp 408–415 | Cite as

Automatic 40Ar/39Ar Dating Techniques Using Multicollector ARGUS VI Noble Gas Mass Spectrometer with Self-Made Peripheral Apparatus

  • Xiu-Juan Bai
  • Hua-Ning Qiu
  • Wen-Gui Liu
  • Lian-Fu Mei
Isotope Geochemistry

Abstract

A new fully automatic 40Ar/39Ar laboratory with a Thermo Scientific© ARGUS VI mass spectrometer has been established in China University of Geosciences (Wuhan). We designed and developed a mini efficient preparation system (80 mL), a CO2 laser for heating samples, a crusher for extracting fluid inclusions within K-poor minerals and an air reservoir (31 L) and pipette (0.1 mL) system. The ARGUS VI mass spectrometer is operated by the Qtegra Noble Gas software, which can control the peripheral accessories, such as pneumatic valves, CO2 laser and crusher through a PeriCon (peripheral controller). The experimental procedures of atmospheric argon analyses, 40Ar/39Ar dating by laser stepwise heating and by progressive crushing in vacuo, can be fully automatically performed. The weighted mean of atmospheric 40Ar/36Ar ratios is 302.22±0.03 (1σ, MSWD=0.74, n=200), indicating that air reservoir and pipette system and the whole instrument system are very stable. This laboratory is a successful pioneer example in China to establish a new noble gas laboratory with self-made peripheral accessories expect for the mass spectrometer.

Key words

40Ar/39Ar dating fully automatic CO2 laser ARGUS VI mass spectrometer Qtegra noble gas software 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

We thank two anonymous reviewers for their valuable comments that improved this manuscript. This study was financially supported by the National Natural Science Foundation of China (Nos. 41503053, 41630315, 41688103, and 91128203). The final publication is available at Springer via https://doi.org/10.1007/s12583-017-0948-9.

References Cited

  1. Alexandre, P., Hamilton, D., Barfod, D., 2006. The ARGUS Multicollection Noble Gas Mass Spectrometer. Geochimica et Cosmochimica Acta, 70(18): A8. https://doi.org/10.1016/j.gca.2006.06.1574CrossRefGoogle Scholar
  2. Bai, X. J., Wang, M., Jiang, Y. D., et al., 2013. Direct Dating of Tin-Tungsten Mineralization of the Piaotang Tungsten Deposit, South China, by 40Ar/39Ar Progressive Crushing. Geochimica et Cosmochimica Acta, 114: 1–12. https://doi.org/10.1016/j.gca.2013.03.022CrossRefGoogle Scholar
  3. Bai, X. J., Wang, M., Lu, K. H., et al., 2011. Direct Dating of Cassiterite by 40Ar/39Ar Progressive Crushing. Chinese Science Bulletin, 56(23): 1899–1904 (in Chinese)CrossRefGoogle Scholar
  4. Barfod, D., Alexandre, P., Hamilton, D., 2006. The ARGUS Multicollection Noble Gas Mass Spectrometer. Geochimica et Cosmochimica Acta, 70(18): A34. https://doi.org/10.1016/j.gca.2006.06.177CrossRefGoogle Scholar
  5. Brereton, N. R., 1970. Corrections for Interfering Isotopes in the 40Ar/39Ar Dating Method. Earth and Planetary Science Letters, 8(6): 427–433. https://doi.org/10.1016/0012-821x(70)90146-9CrossRefGoogle Scholar
  6. Dalrymple, G. B., Alexander, E. C., Lanphere, M. A., et al., 1981. Irradiation of Samples for 40Ar/39Ar Dating Using the Geological Survey Triga Reactor. Professional Paper 1176. U. S. Geol. Surv., WashingtonGoogle Scholar
  7. Jiang, Y. D., Qiu, H. N., Xu, Y. G., 2012. Hydrothermal Fluids, Argon Isotopes and Mineralization Ages of the Fankou Pb-Zn Deposit in South China: Insights from Sphalerite 40Ar/39Ar Progressive Crushing. Geochimica et Cosmochimica Acta, 84: 369–379. https://doi.org/10.1016/j.gca.2012.01.044CrossRefGoogle Scholar
  8. Kendrick, M. A., Burgess, R., Pattrick, R. A. D., et al., 2001. Halogen and Ar-Ar Age Determinations of Inclusions within Quartz Veins from Porphyry Copper Deposits Using Complementary Noble Gas Extraction Techniques. Chemical Geology, 177(3/4): 351–370. https://doi.org/10.1016/s0009-2541(00)00419-8CrossRefGoogle Scholar
  9. Koppers, A. A. P., 2002. ArArCALC—Software for 40Ar/39Ar Age Calculations. Computers & Geosciences, 28(5): 605–619. https://doi.org/10.1016/s0098-3004(01)00095-4CrossRefGoogle Scholar
  10. Lederer, C. M., Shirley, V. S. E., 1978. Table of Isotopes, 7th Ed. Wiley, New YorkGoogle Scholar
  11. Lee, J.-Y., Marti, K., Severinghaus, J. P., et al., 2006. A Redetermination of the Isotopic Abundances of Atmospheric Ar. Geochimica et Cosmochimica Acta, 70(17): 4507–4512. https://doi.org/10.1016/j.gca.2006.06.1563CrossRefGoogle Scholar
  12. Liu, J., Wu, G., Qiu, H. N., et al., 2015. 40Ar/39Ar Dating, Fluid Inclusions and S-Pb Isotope Systematics of the Shabaosi Gold Deposit, Heilongjiang Province, China. Geological Journal, 50(5): 592–606. https://doi.org/10.1002/gj.2577CrossRefGoogle Scholar
  13. Mark, D. F., Barfod, D., Stuart, F. M., et al., 2009. The ARGUS Multicollector Noble Gas Mass Spectrometer: Performance for 40Ar/39Ar Geochronology. Geochemistry, Geophysics, Geosystems, 10(10). https://doi.org/10.1029/2009gc002643Google Scholar
  14. Mark, D. F., Stuart, F. M., de Podesta, M., 2011. New High-Precision Measurements of the Isotopic Composition of Atmospheric Argon. Geochimica et Cosmochimica Acta, 75(23): 7494–7501. https://doi.org/10.1016/j.gca.2011.09.042CrossRefGoogle Scholar
  15. McDougall, I., Brown, F. H., Fleagle, J. G., 2005. Stratigraphic Placement and Age of Modern Humans from Kibish, Ethiopia. Nature, 433(7027): 733–736. https://doi.org/10.1038/nature03258CrossRefGoogle Scholar
  16. McDougall, I., Harrison, T. M., 1999. Geochronology and Termochronology by the 40Ar/39Ar Method (2nd Edition). Oxford University Press, New YorkGoogle Scholar
  17. Merrihue, C., Turner, G., 1966. Potassium-Argon Dating by Activation with Fast Neutrons. Journal of Geophysical Research, 71(11): 2852–2857. https://doi.org/10.1029/jz071i011p02852CrossRefGoogle Scholar
  18. Mitchell, J. G., 1968. The Argon-40/Argon-39 Method for Potassium-Argon Age Determination. Geochimica et Cosmochimica Acta, 32(7): 781–790. https://doi.org/10.1016/0016-7037(68)90012-4CrossRefGoogle Scholar
  19. Nier, A. O., 1950. A Redetermination of the Relative Abundances of the Isotopes of Carbon, Nitrogen, Oxygen, Argon, and Potassium. Physical Review, 77(6): 789–793. https://doi.org/10.1103/physrev.77.789CrossRefGoogle Scholar
  20. Pfänder, J. A., Sperner, B., Ratschbacher, L., et al., 2014. High-Resolution 40Ar/39Ar Dating Using a Mechanical Sample Transfer System Combined with a High-Temperature Cell for Step Heating Experiments and a Multicollector ARGUS Noble Gas Mass Spectrometer. Geochemistry, Geophysics, Geosystems, 15(6): 2713–2726. https://doi.org/10.1002/2014gc005289CrossRefGoogle Scholar
  21. Phillips, D., Miller, J. M., 2006. 40Ar/39Ar Dating of Mica-Bearing Pyrite from Thermally Overprinted Archean Gold Deposits. Geology, 34(5): 397–400. https://doi.org/10.1130/g22298.1CrossRefGoogle Scholar
  22. Qiu, H. N., 1996. 40Ar-39Ar Dating of the Quartz Samples from Two Mineral Deposits in Western Yunnan (SW China) by Crushing in Vacuum. Chemical Geology, 127(1/2/3): 211–222. https://doi.org/10.1016/0009-2541(95)00093-3CrossRefGoogle Scholar
  23. Qiu, H. N., Bai, X. J., Liu, W. G., et al., 2015. Automatic 40Ar/39Ar Dating Technique Using Multicollector ARGUSvi Ms with Home-Made Apparatus. Geochimica, 44(5): 477–484 (in Chinese with English Abstract)Google Scholar
  24. Qiu, H. N., Jiang, Y. D., 2007. Sphalerite 40Ar/39Ar Progressive Crushing and Stepwise Heating Techniques. Earth and Planetary Science Letters, 256(1/2): 224–232. https://doi.org/10.1016/j.epsl.2007.01.028CrossRefGoogle Scholar
  25. Qiu, H. N., Wijbrans, J. R., 2006. Paleozoic Ages and Excess 40Ar in Garnets from the Bixiling Eclogite in Dabieshan, China: New Insights from 40Ar/39Ar Dating by Stepwise Crushing. Geochimica et Cosmochimica Acta, 70(9): 2354–2370. https://doi.org/10.1016/j.gca.2005.11.030CrossRefGoogle Scholar
  26. Qiu, H. N., Wu, H. Y., Yun, J. B., et al., 2011. High-Precision 40Ar/39Ar Age of the Gas Emplacement into the Songliao Basin. Geology, 39(5): 451–454. https://doi.org/10.1130/g31885.1CrossRefGoogle Scholar
  27. Qiu, H. N., Zhu, B. Q., Sun, D. Z., 2002. Age Significance Interpreted from 40Ar-39Ar Dating of Quartz Samples from the Dongchuan Copper Deposits, Yunnan, SW China, by Crushing and Heating. Geochemical Journal, 36(5): 475–491. https://doi.org/10.2343/geochemj.36.475CrossRefGoogle Scholar
  28. Renne, P. R., Cassata, W. S., Morgan, L. E., 2009a. The Isotopic Composition of Atmospheric Argon and 40Ar/39Ar Geochronology: Time for a Change? Quaternary Geochronology, 4(4): 288–298. https://doi.org/10.1016/j.quageo.2009.02.015CrossRefGoogle Scholar
  29. Renne, P. R., Deino, A. L., Hames, W. E., et al., 2009b. Data Reporting Norms for 40Ar/39Ar Geochronology. Quaternary Geochronology, 4(5): 346–352. https://doi.org/10.1016/j.quageo.2009.06.005CrossRefGoogle Scholar
  30. Sigurgeirsson, T., 1962. Age Dating of Young Basalts with the Potassium-Argon Method (in Icelandic). Unpublished Report Physics Laboratory. University of Iceland, IcelandGoogle Scholar
  31. Turner, G., 1971. Argon 40-Argon 39Dating: The Optimization of Irradiation Parameters. Earth and Planetary Science Letters, 10(2): 227–234. https://doi.org/10.1016/0012-821x(71)90010-0CrossRefGoogle Scholar
  32. Turner, G., Bannon, M. P., 1992. Argon Isotope Geochemistry of Inclusion Fluids from Granite-Associated Mineral Veins in Southwest and Northeast England. Geochimica et Cosmochimica Acta, 56(1): 227–243. https://doi.org/10.1016/0016-7037(92)90128-6CrossRefGoogle Scholar
  33. Turner, G., Wang, S. S., 1992. Excess Argon, Crustal Fluids and Apparent Isochrons from Crushing K-Feldspar. Earth and Planetary Science Letters, 110(1/2/3/4): 193–211. https://doi.org/10.1016/0012-821x(92)90048-zCrossRefGoogle Scholar
  34. Turrin, B. D., Swisher, C. C. III, Deino, A. L., 2010. Mass Discrimination Monitoring and Intercalibration of Dual Collectors in Noble Gas Mass Spectrometer Systems. Geochemistry, Geophysics, Geosystems, 11(8). https://doi.org/10.1029/2009gc003013Google Scholar
  35. Valkiers, S., Vendelbo, D., Berglund, M., et al., 2010. Preparation of Argon Primary Measurement Standards for the Calibration of Ion Current Ratios Measured in Argon. International Journal of Mass Spectrometry, 291(1/2): 41–47. https://doi.org/10.1016/j.ijms.2010.01.004CrossRefGoogle Scholar
  36. Wang, M., Bai, X. J., Hu, R. G., et al., 2015. Direct Dating of Cassiterite in Xitian Tungsten-Tin Polymetallic Deposit, South-East Hunan, by 40Ar/39Ar Progressive Crushing. Geotectonica et Metallogenia, 39(6): 1049–1060 (in Chinese with English Abstract)Google Scholar
  37. Wang, M., Bai, X. J., Yun, J. B., et al., 2016. 40Ar/39Ar Dating of Mineralization of Shizhuyuan Polymetallic Deposit. Geochimica, 45(1): 41–51 (in Chinese with English Abstract)Google Scholar

Copyright information

© China University of Geosciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Tectonics and Petroleum Resources, Ministry of EducationChina University of GeosciencesWuhanChina
  2. 2.State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of GeochemistryChinese Academy of SciencesGuangzhouChina
  3. 3.State Key Laboratory of Geological Processes and Mineral ResourcesChina University of GeosciencesWuhanChina

Personalised recommendations