Advertisement

Journal of Earth Science

, Volume 29, Issue 2, pp 280–294 | Cite as

Isotope Chronology and Geochemistry of the Lower Carboniferous Granite in Xilinhot, Inner Mongolia, China

  • Xiaocheng Zhao
  • Wenxiao Zhou
  • Dong Fu
  • Bo Huang
  • Mengchun Ge
Petrology and Mineral Deposits
  • 31 Downloads

Abstract

Geochronological and geochemical analyses were performed on K-feldspar granites and monzonitic granites from the Xilinhot area, Inner Mongolia, China. Zircon U/Pb ages indicate that the two types granites were emplaced during the Lower Carboniferous. The K-feldspar granites (332 Ma) have the typical A-type granite characteristics of a post-collision setting. The monzonitic granites have an emplacement age of 323 Ma. Zircon εHf values of the former range from +12.8 to +14.2, with an average TDM2 of 453 Ma. The latter have lower zircon εHf values, ranging from +5.4 to +10.7, with an average TDM2 of 798 Ma. The strong, positive εHf values of the zircon indicate that both sets of samples are from a juvenile crust formed in an oceanic crust subduction stage, although the monzonitic granite may have undergone a hybridization of crustal materials. These results indicate a younger post orogenic event. The Paleo-Asian Ocean had closed before the Early Carboniferous and the Xilinhot area started its post-orogenic evolution with an extensional tectonic environment during the Early Carboniferous.

Key words

Lower Carboniferous granite Paleo-Asian Ocean Lu-Hf isotope Xilinhot Inner Mongolia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors are indebted to Prof. Defan Xie from the School of Earth Sciences, China University of Geosciences, Wuhan for his guidance during field work, and thanks also go to Jianzhen Geng and Yongqing Zhang for the zircon U-Pb dating by LA-ICP-MS at the Tianjin Center of China Geological Survey. This study was supported by the China Geological Survey (Nos. 1212010510507, 1212010811005, 1212011220448) and the Fundamental Research Funds for the Central Universities, China University of Geosciences, Wuhan (No. CUGL150816). The final publication is available at Springer via https://doi.org/10.1007/s12583-017-0942-2.

References Cited

  1. Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses that do not Report 204Pb. Chemical Geology, 192(1/2): 59–79. https://doi.org/10.1016/s0009-2541(02)00195-xCrossRefGoogle Scholar
  2. Badarch, G., Cunningham, W. D., Windley, B. F., 2002. A New Terrane Subdivision for Mongolia: Implications for the Phanerozoic Crustal Growth of Central Asia. Journal of Asian Earth Sciences, 21(1): 87–110. https://doi.org/10.1016/s1367-9120(02)00017-2CrossRefGoogle Scholar
  3. Batchelor, R. A., Bowden, P., 1985. Petrogenetic Interpretation of Granitoid Rock Series Using Multicationic Parameters. Chemical Geology, 48(1/2/3/4): 43–55. https://doi.org/10.1016/0009-2541(85)90034-8CrossRefGoogle Scholar
  4. Blichert-Toft, J., Albarède, F., 1997. The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-Crust System. Earth and Planetary Science Letters, 148(1/2): 243–258. https://doi.org/10.1016/s0012-821x(97)00040-xCrossRefGoogle Scholar
  5. Buslov, M. M., Fujiwara, Y., Iwata, K., et al., 2004. Late Paleozoic–Early Mesozoic Geodynamics of Central Asia. Gondwana Research, 7(3): 791–808. https://doi.org/10.1016/s1342-937x(05)71064-9CrossRefGoogle Scholar
  6. Chen, B., Xu, B., 1996. The Main Characteristics and Tectonic Implications of Two Kinds of Paleozoic Granitoids in Sunidzuqi, Central Inner Mongolia. Acta Petrologica Sinica, 10(4): 49–64 (in Chinese with English Abstract)Google Scholar
  7. Demoux, A., Kröner, A., Badarch, G., et al., 2009. Zircon Ages from the Baydrag Block and the Bayankhongor Ophiolite Zone: Time Constraints on Late Neoproterozoic to Cambrian Subduction-and Accretion-Related Magmatism in Central Mongolia. The Journal of Geology, 117(4): 377–397. https://doi.org/10.1086/598947CrossRefGoogle Scholar
  8. Eby, G. N., 1992. Chemical Subdivision of the A-Type Granitoids: Petrogenetic and Tectonic Implications. Geology, 20(7): 641–644. https://doi.org/10.1130/0091-7613(1992)020<0641:csotat>2.3.co;2CrossRefGoogle Scholar
  9. Frost, B. R., Barnes, C. G., Collins, W. J., et al., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11): 2033–2048. https://doi.org/10.1093/petrology/42.11.2033CrossRefGoogle Scholar
  10. Glorie, S., De Grave, J., Buslov, M. M., et al., 2011. Formation and Palaeozoic Evolution of the Gorny-Altai–Altai-Mongolia Suture Zone (South Siberia): Zircon U/Pb Constraints on the Igneous Record. Gondwana Research, 20(2/3): 465–484. https://doi.org/10.1016/j.gr.2011.03.003CrossRefGoogle Scholar
  11. Griffin, W. L., Pearson, N. J., Belousova, E., et al., 2000. The Hf Isotope Composition of Cratonic Mantle: LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133–147. https://doi.org/10.1016/s0016-7037(99)00343-9CrossRefGoogle Scholar
  12. Han, B. F., He, G. Q., Wang, X. C., et al., 2011. Late Carboniferous Collision between the Tarim and Kazakhstan-Yili Terranes in the Western Segment of the South Tian Shan Orogen, Central Asia, and Implications for the Northern Xinjiang, Western China. Earth-Science Reviews, 109(3/4): 74–93. https://doi.org/10.1016/j.earscirev.2011.09.001CrossRefGoogle Scholar
  13. Han, B. F., Wang, S. G., Jahn, B. M., et al., 1997. Depleted-Mantle Source for the Ulungur River A-Type Granites from North Xinjiang, China: Geochemistry and Nd-Sr Isotopic Evidence, and Implications for Phanerozoic Crustal Growth. Chemical Geology, 138(3/4): 135–159. https://doi.org/10.1016/s0009-2541(97)00003-xCrossRefGoogle Scholar
  14. Hong, D. W., Huang, H. Z., Xiao, Y. J., 1994. The Permian Alkaline Granites in Central Inner Mongolia and Their Geodynamic Significance. Acta Geologica Sinica, 10(3): 219–230 (in Chinese with English Abstract)Google Scholar
  15. Hong, D. W., Wang, S. G., Han, B. F., et al., 1995. Tectonic Environment Classification and Identifying Symbol of Alkali Granite. Science in China (Series B), 25(4): 418–426 (in Chinese)Google Scholar
  16. Hong, D. W., Zhang, J. S., Wang, T., et al., 2004. Continental Crustal Growth and the Supercontinental Cycle: Evidence from the Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 23(5): 799–813. https://doi.org/10.1016/s1367-9120(03)00134-2CrossRefGoogle Scholar
  17. Hsu, K. J., Wang, Q. C., Li, L., et al., 1991. Geologic Evolution of the Neimonides: A Working Hypothesis. Eclogae Geologicae Helvetiae, 84(1): 1–31Google Scholar
  18. Hu, Z. C., Liu, Y. S., Gao, S., et al., 2008a. A Local Aerosol Extraction Strategy for the Determination of the Aerosol Composition in Laser Ablation Inductively Coupled Plasma Mass Spectrometry. Journal of Analytical Atomic Spectrometry, 23(9): 1192–1203. https://doi.org/10.1039/b803934hCrossRefGoogle Scholar
  19. Hu, Z. C., Gao, S., Liu, Y. S., et al., 2008b. Signal Enhancement in Laser Ablation ICP-MS by Addition of Nitrogen in the Central Channel Gas. Journal of Analytical Atomic Spectrometry, 23(8): 1093–1101. https://doi.org/10.1039/b804760jCrossRefGoogle Scholar
  20. Hu, Z. C., Liu, Y. S., Gao, S., et al., 2012. Improved in situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27(9): 1391–1399. https://doi.org/10.1039/c2ja30078hCrossRefGoogle Scholar
  21. Jahn, B. M., Litvinovsky, B. A., Zanvilevich, A. N., et al., 2009. Peralkaline Granitoid Magmatism in the Mongolian-Transbaikalian Belt: Evolution, Petrogenesis and Tectonic Significance. Lithos, 113(3/4): 521–539. https://doi.org/10.1016/j.lithos.2009.06.015CrossRefGoogle Scholar
  22. Jahn, B. M., Wu, F. Y., Chen, B., 2000a. Granitoids of the Central Asian Orogenic Belt and Continental Growth in the Phanerozoic. Transactions of the Royal Society of Edinburgh: Earth Sciences, 91(1/2): 181–193. https://doi.org/10.1017/s0263593300007367CrossRefGoogle Scholar
  23. Jahn, B. M., Wu, F. Y., Chen, B., 2000b. Massive Granitoid Generation in Central Asia: Nd Isotope Evidence and Implication for Continental Growth in the Phanerozoic. Episodes, 23(2): 82–92Google Scholar
  24. Jian, P., Kröner, A., Windley, B. F., et al., 2012. Carboniferous and Cretaceous Mafic-Ultramafic Massifs in Inner Mongolia (China): A SHRIMP Zircon and Geochemical Study of the Previously Presumed Integral “Hegenshan Ophiolite”. Lithos, 142/143: 48–66. https://doi.org/10.1016/j.lithos.2012.03.007CrossRefGoogle Scholar
  25. Jian, P., Liu, D. Y., Kröner, A., et al., 2008. Time Scale of an Early to Mid-Paleozoic Orogenic Cycle of the Long-Lived Central Asian Orogenic Belt, Inner Mongolia of China: Implications for Continental Growth. Lithos, 101(3/4): 233–259. https://doi.org/10.1016/j.lithos.2007.07.005CrossRefGoogle Scholar
  26. Khain, E. V., Bibikova, E. V., Kröner, A., et al., 2002. The Most Ancient Ophiolite of the Central Asian Fold Belt: U-Pb and Pb-Pb Zircon Ages for the Dunzhugur Complex, Eastern Sayan, Siberia, and Geodynamic Implications. Earth and Planetary Science Letters, 199(3/4): 311–325. https://doi.org/10.1016/s0012-821x(02)00587-3CrossRefGoogle Scholar
  27. Khain, E., Bibikova, E. V., Salnikova, E. B., et al., 2003. The Palaeo-Asian Ocean in the Neoproterozoic and Early Palaeozoic: New Geochronologic Data and Palaeotectonic Reconstructions. Precambrian Research, 122(1/2/3/4): 329–358. https://doi.org/10.1016/s0301-9268(02)00218-8CrossRefGoogle Scholar
  28. Kinny, P. D., Maas, R., 2003. Lu-Hf and Sm-Nd Isotope Systems in Zircon. Reviews in Mineralogy and Geochemistry, 53(1): 327–341. https://doi.org/10.2113/0530327CrossRefGoogle Scholar
  29. Kröner, A., Demoux, A., Zack, T., et al., 2011. Zircon Ages for a Felsic Volcanic Rock and Arc-Related Early Palaeozoic Sediments on the Margin of the Baydrag Microcontinent, Central Asian Orogenic Belt, Mongolia. Journal of Asian Earth Sciences, 42(5): 1008–1017. https://doi.org/10.1016/j.jseaes.2010.09.002CrossRefGoogle Scholar
  30. Kröner, A., Lehmann, J., Schulmann, K., et al., 2010. Lithostratigraphic and Geochronological Constraints on the Evolution of the Central Asian Orogenic Belt in SW Mongolia: Early Paleozoic Rifting Followed by Late Paleozoic Accretion. American Journal of Science, 310(7): 523–574. https://doi.org/10.2475/07.2010.01CrossRefGoogle Scholar
  31. Kröner, A., Windley, B. F., Badarch, G., et al., 2007. Accretionary Growth and Crust Formation in the Central Asian Orogenic Belt and Comparison with the Arabian-Nubian Shield. Geological Society of America Memoirs, 200(5): 181–209CrossRefGoogle Scholar
  32. Li, J. Y., 2006. Permian Geodynamic Setting of Northeast China and Adjacent Regions: Closure of the Paleo-Asian Ocean and Subduction of the Paleo-Pacific Plate. Journal of Asian Earth Sciences, 26(3/4): 207–224. https://doi.org/10.1016/j.jseaes.2005.09.001CrossRefGoogle Scholar
  33. Li, J. Y., Gao, L. M., Sun, G. H., et al., 2007. Shuangjingzi Middle Triassic Syn-Collisional Crust-Derived Grainite in the East Inner Monglia and Its Constraint on the Timing of Collision between Siberian and Sino-Korean Paleo-Plates. Acta Petrologica Sinica, 23(3): 565–582 (in Chinese with English Abstract)Google Scholar
  34. Liu, Y. S., Gao, S., Hu, Z. C., et al., 2009. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2): 537–571. https://doi.org/10.1093/petrology/egp082Google Scholar
  35. Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34–43. https://doi.org/10.1016/j.chemgeo.2008.08.004CrossRefGoogle Scholar
  36. Ludwig, K. R., 2003. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, BerkeleyGoogle Scholar
  37. Ma, S. W., Liu, C. F., Xu, Z. Q., et al., 2017. Geochronology, Geochemistry and Tectonic Significance of the Early Carboniferous Gabbro and Diorite Plutons in West Ujimqin, Inner Mongolia. Journal of Earth Science, 28(2): 249–264. https://doi.org/10.1007/s12583-016-0912-2CrossRefGoogle Scholar
  38. Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635–643. https://doi.org/10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2CrossRefGoogle Scholar
  39. Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3/4): 215–224. https://doi.org/10.1016/0012-8252(94)90029-9CrossRefGoogle Scholar
  40. Möller, A., O’Brien, P. J., Kennedy, A., et al., 2003. Linking Growth Episodes of Zircon and Metamorphic Textures to Zircon Chemistry: An Example from the Ultrahigh-Temperature Granulites of Rogaland (SW Norway). Geological Society, London, Special Publications, 220(1): 65–81. https://doi.org/10.1144/gsl.sp.2003.220.01.04CrossRefGoogle Scholar
  41. Mossakovsky, A. A., Ruzhentsev, S. V., Samygin, S. G., et al., 1994. Central Asian Fold Belt: Geodynamic Evolution and Formation History. Geotectonics, 27(6): 445–474Google Scholar
  42. Pearce, N. J. G., Perkins, W. T., Westgate, J. A., et al., 1997. A Compilation of New and Published Major and Trace Element Data for NIST SRM 610 and NIST SRM 612 Glass Reference Materials. Geostandards and Geoanalytical Research, 21(1): 115–144. https://doi.org/10.1111/j.1751-908x.1997.tb00538.xCrossRefGoogle Scholar
  43. Rubatto, D., Gebauer, D., 2000. Use of Cathodoluminescence for U-Pb Zircon Dating by Ion Microprobe: Some Examples from the Western Alps. In: Pagel, M., Barbin, V., Blanc, P., et al., eds., Cathodoluminescence in Geosciences. Springer-Verlag Berlin Heidelberg, [S.l.]. 373–400Google Scholar
  44. Şengör, A. M. C., Natalʼin, B. A., 1996. Paleotectonics of Asia: Fragments of a Synthesis. In: Yin, A., Harrison, M., eds., The Tectonic Evolution of Asia. Cambridge University Press, Cambridge. 486–640Google Scholar
  45. Şengör, A. M. C., Natalʼin, B. A., Burtman, V. S., 1993. Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia. Nature, 364(6435): 299–307. https://doi.org/10.1038/364299a0CrossRefGoogle Scholar
  46. Shao, J. A., He, G. Q., Tang, K. D., 2015. The Evolution of Permian Continental Crust in Northern Part of North China. Acta Petrologica Sinica, 31(1): 47–55 (in Chinese with English Abstract)Google Scholar
  47. Shao, J. A., Tang, K. D., He, G. Q., 2014. Early Permian Tectono-Palaeogeographic Reconstruction of Inner Mongolia, China. Acta Petrologica Sinica, 30(7): 1858–1866 (in Chinese with English Abstract)Google Scholar
  48. Söderlund, U., Patchett, P. J., Vervoort, J. D., et al., 2004. The 176Lu Decay Constant Determined by Lu-Hf and U-Pb Isotope Systematics of Precambrian Mafic Intrusions. Earth and Planetary Science Letters, 219(3/4): 311–324. https://doi.org/10.1016/s0012-821x(04)00012-3CrossRefGoogle Scholar
  49. Song, B., Zhang, Y. H., Wang, Y. S., et al., 2002. Mount Making and Procedure of the SHRIMP Dating. Geological Review, 48(Suppl.): 26–30 (in Chinese with English Abstract)Google Scholar
  50. Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313–345. https://doi.org/10.1144/gsl.sp.1989.042.01.19CrossRefGoogle Scholar
  51. Tang, K. D., 1990. Tectonic Development of Paleozoic Foldbelts at the North Margin of the Sino-Korean Craton. Tectonics, 9(2): 249–260. https://doi.org/10.1029/tc009i002p00249CrossRefGoogle Scholar
  52. Tang, K. D., 1992. Tectonic Evolution and Metallogenic Regularity of the Fold Belt in the North of the North China Plate. Peking University Press, Beijing (in Chinese)Google Scholar
  53. Wang, Y. M., Han, B. F., Griffin, W. L., et al., 2012. Post-Entrainment Mineral-Magma Interaction in Mantle Xenoliths from Inner Mongolia, Western North China Craton. Journal of Earth Science, 23(1): 54–76. https://doi.org/10.1007/s12583-012-0233-xCrossRefGoogle Scholar
  54. Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407–419. https://doi.org/10.1007/bf00402202CrossRefGoogle Scholar
  55. Wiedenbeck, M., Allé, P., Corfu, F., et al., 1995. Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and REE Analyses. Geostandards and Geoanalytical Research, 19(1): 1–23. https://doi.org/10.1111/j.1751-908x.1995.tb00147.xCrossRefGoogle Scholar
  56. Wu, F. Y., Li, X. H., Yang, J. H., et al., 2007. Discussions on the Petrogenesis of Granites. Acta Petrologica Sinica, 23(6): 1217–1238 (in Chinese with English Abstract)Google Scholar
  57. Wu, Y. B., Zheng, Y. F., 2004. Genetic of Zircon and Its Constraints on Interpretation of U-Pb Age. Chinese Science Bulletin, 49(16): 1589–1604 (in Chinese)CrossRefGoogle Scholar
  58. Xiao, W. J., Windley, B. F., Hao, J., et al., 2003. Accretion Leading to Collision and the Permian Solonker Suture, Inner Mongolia, China: Termination of the Central Asian Orogenic Belt. Tectonics, 22(6): 1069. https://doi.org/10.1029/2002tc001484CrossRefGoogle Scholar
  59. Xiao, W. J., Windley, B. F., Huang, B. C., et al., 2009. End-Permian to Mid-Triassic Termination of the Accretionary Processes of the Southern Altaids: Implications for the Geodynamic Evolution, Phanerozoic Continental Growth, and Metallogeny of Central Asia. International Journal of Earth Sciences, 98(6): 1189–1217. https://doi.org/10.1007/s00531-008-0407-zCrossRefGoogle Scholar
  60. Xu, B., Charvet, J., Chen, Y., et al., 2013. Middle Paleozoic Convergent Orogenic Belts in Western Inner Mongolia (China): Framework, Kinematics, Geochronology and Implications for Tectonic Evolution of the Central Asian Orogenic Belt. Gondwana Research, 23(4): 1342–1364. https://doi.org/10.13039/501100001809CrossRefGoogle Scholar
  61. Xu, B., Chen, B., 1997. Framework and Evolution of the Middle Paleozoic Orogenic Belt between Siberian and North China Plates in Northern Inner Mongolia. Science in China Series D: Earth Sciences, 40(5): 463–469. https://doi.org/10.1007/bf02877610CrossRefGoogle Scholar
  62. Xu, B., Zhao, P., Bao, Q. Z., et al., 2014. Preliminary Study on the Pre-Mesozoic Tectonic Unit Division of the Xing-Meng Orogenic Belt (XMOB). Acta Petrologica Sinica, 30(7):1841–1857 (in Chinese with English Abstract)Google Scholar
  63. Zhang, X. H., Zhai, M. G., 2010. Magmatism and Its Metallogenetic Effects during the Paleozoic Continental Crustal Construction in Northern North China: An Overview. Acta Petrologica Sinica, 26(5):1329–1341 (in Chinese with English Abstract)Google Scholar
  64. Zhang, X. H., Zhang, H. F., Tang, Y. J., et al., 2006. Early Triassic A-Type Felsic Volcanism in the Xilinhaote-Xiwuqi, Central Inner Mongolia: Age, Geochemistry and Tectonic Implications. Acta Petrologica Sinica, 22(11): 2769–2780 (in Chinese with English Abstract)Google Scholar
  65. Zhao, P., Chen, Y., Xu, B., et al., 2013. Did the Paleo-Asian Ocean between North China Block and Mongolia Block Exist during the Late Paleozoic? First Paleomagnetic Evidence from Central-Eastern Inner Mongolia, China. Journal of Geophysical Research: Solid Earth, 118(5): 1873–1894. https://doi.org/10.13039/501100001809Google Scholar
  66. Zhao, P., Xu, B., Tong, Q. L., et al., 2016. Sedimentological and Geochronological Constraints on the Carboniferous Evolution of Central Inner Mongolia, Southeastern Central Asian Orogenic Belt: Inland Sea Deposition in a Post-Orogenic Setting. Gondwana Research, 31: 253–270. https://doi.org/10.13039/501100001809CrossRefGoogle Scholar
  67. Zhou, W. X., Li, S. C., Ge, M. C., et al., 2016. Geochemistry and Zircon Geochronology of a Gabbro-Granodiorite Complex in Tongxunlian, Inner Mongolia: Partial Melting of Enriched Lithosphere Mantle. Geological Journal, 51(1): 21–41. https://doi.org/10.1002/gj.2603CrossRefGoogle Scholar

Copyright information

© China University of Geosciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Geotechnical & Structural Engineering Research CenterShandong UniversityJinanChina
  2. 2.Institute of Geological SurveyChina University of GeosciencesWuhanChina
  3. 3.School of Earth SciencesChina University of GeosciencesWuhanChina

Personalised recommendations