Journal of Earth Science

, Volume 29, Issue 2, pp 237–244 | Cite as

Permineralized Calamitean Axes from the Upper Permian of Xinjiang, Northwest China and Its Paleoecological Implication

  • Fayao Chen
  • Xiao Shi
  • Jianxin Yu
  • Hongfei Chi
  • Jun Zhu
  • Hui Li
  • Cheng Huang
Paleontology

Abstract

Two anatomically preserved calamitean axes are reported for the first time from the Late Permian Wutonggou Formation in the southern Bogda Mountains, Xinjiang Uygur Autonomous Region, Northwest China. Based on the anatomical features, these axes are assigned to Arthropitys. A new species Arthropitys taoshuyuanensis sp. nov. is established. A. taoshuyuanensis sp. nov. possesses a large pith and comprises large pith cavity and a narrow perimedullary zone at the nodes and diaphragms at the internodes. Carinal canals are circular and surrounded by a single layer of metaxylem tracheids. Secondary xylem is divided into interfascicular rays and fascicular wedges. Interfascicular rays are initially four to five cells wide and taper abruptly centrifugally. Fascicular wedge consists of thick-walled tracheids and thin-walled fascicular ray cells. Radial tracheid walls have uniseriate or biseriate circular pits, or scalariform pits. The absence of growth rings in the Arthropitys specimens indicates that they probably lived in the wetland area under stable annual temperature and water sufficient conditions.

Key words

Arthropitys calamitean horsetail Late Permian Xinjiang 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

We gratefully acknowledge the anonymous reviewers for their critical comments and constructive suggestions, which have improved the quality of the paper greatly. We also thank Prof. Shucheng Xie from China University of Geosciences and Ms. Qingting Wu from Ohio State University for collecting the samples. This study was supported by the National Natural Science Foundation of China (Nos. 40972002, 41272024 and 41572005). The final publication is available at Springer via https://doi.org/10.1007/s12583-017-0941-3.

References Cited

  1. Anderson, B. R., 1954. A Study of American Petrified Calamities. Annals of the Missouri Botanical Garden, 41(4): 395–418. https://doi.org/10.2307/2394685CrossRefGoogle Scholar
  2. Andrews, H. N., 1952. Some American Petrified Calamitean Stems. Annals of the Missouri Botanical Garden, 39(3): 189–218. https://doi.org/10.2307/2394523CrossRefGoogle Scholar
  3. Boureau, E., 1964. Traité de Paléobotanique. III. Sphenophyta, Noeggerathiophyta. Masson, Paris. 479–523Google Scholar
  4. Cichan, M. A., Taylor, T. N., 1983. A Systematic and Developmental Analysis of Arthropitys deltoides sp. nov. Botanical Gazette, 144(2): 285–294. https://doi.org/10.1086/337375CrossRefGoogle Scholar
  5. Coimbra, A. M., Mussa, D., 1984. Associação Lignitafoflorística na Formação Pedra-de-Fogo, (Arenito Cacunda), Bacia do Maranhão-Piauí, Brasil. Anais do Congresso Brasileiro de Geologia, 33: 591–605Google Scholar
  6. Creber, G. T., Chaloner, W. G., 1984. Influence of Environmental Factors on the Wood Structure of Living and Fossil Trees. The Botanical Review, 50(4): 357–448. https://doi.org/10.1007/bf02862630CrossRefGoogle Scholar
  7. DiMichele, W. A., Hook, R. W., 1992. Paleozoic Terrestrial Ecosystems. In: Behrensmeyer, A. K., Damuth, J. D., DiMichele, W. A., et al., eds., Terrestrial Ecosystems through Time. University of Chicago Press, Chicago and London. 204–325Google Scholar
  8. DiMichele, W. A., Pfefferkorn, H. W., Gastaldo, R. A., 2001. Response of Late Carboniferous and Early Permian Plant Communities to Climate Change. Annual Review of Earth and Planetary Sciences, 29(1): 461–487. https://doi.org/10.1146/annurev.earth.29.1.461CrossRefGoogle Scholar
  9. DiMichele, W. A., Phillips, T. L., 1994. Paleobotanical and Paleoecological Constraints on Models of Peat Formation in the Late Carboniferous of Euramerica. Palaeogeography, Palaeoclimatology, Palaeoecology, 106(1/2/3/4): 39–90. https://doi.org/10.1016/0031-0182(94)90004-3CrossRefGoogle Scholar
  10. Eggert, D. A., 1962. The Ontogeny of Carboniferous Arborescent Sphenopsida. Palaeontographica Abteilung B, 110: 99–127Google Scholar
  11. Feng, Z., 2012. Ningxiaites specialis, a New Woody Gymnosperm from the Uppermost Permian of China. Review of Palaeobotany and Palynology, 181: 34–46. https://doi.org/10.1016/j.revpalbo.2012.05.005CrossRefGoogle Scholar
  12. Feng, Z., Wang, J., Rößler, R., 2010. Palaeoginkgoxylon zhoui, a New Ginkgophyte Wood from the Guadalupian (Permian) of China and Its Evolutionary Implications. Review of Palaeobotany and Palynology, 162(2): 146–158. https://doi.org/10.1016/j.revpalbo.2010.06.010CrossRefGoogle Scholar
  13. Feng, Z., Wang, J., Rößler, R., 2011. A Unique Gymnosperm from the Latest Permian of China, and Its Ecophysiological Implications. Review of Palaeobotany and Palynology, 165(1/2): 27–40. https://doi.org/10.1016/j.revpalbo.2011.02.002CrossRefGoogle Scholar
  14. Feng, Z., Wang, J., Rößler, R., et al., 2013. Complete Tylosis Formation in a Latest Permian Conifer Stem. Annals of Botany, 111(6): 1075–1081. https://doi.org/10.1093/aob/mct060CrossRefGoogle Scholar
  15. Feng, Z., Wang, J., Shen, G. L., 2008. Zalesskioxylon xiaheyanense sp. nov., a Gymnospermous Wood of the Stephanian (Late Pennsylvanian) from Ningxia, Northwestern China. Journal of Asian Earth Sciences, 33(3/4): 219–228. https://doi.org/10.1016/j.jseaes.2007.11.015CrossRefGoogle Scholar
  16. Feng, Z., Zierold, T., Rößler, R., 2012a. When Horsetails Became Giants. Chinese Science Bulletin, 57(18): 2285–2288. https://doi.org/10.1007/s11434-012-5086-2CrossRefGoogle Scholar
  17. Feng, Z., Wang, J., Liu, L. J., et al., 2012b. A Novel Coniferous Tree Trunk with Septate Pith from the Guadalupian (Permian) of China: Ecological and Evolutionary Significance. International Journal of Plant Sciences, 173(7): 835–848. https://doi.org/10.1086/666660CrossRefGoogle Scholar
  18. Gastaldo, R. W., DiMichele, W. A., Pfefferkorn, H. W., 1996. Out of the Icehouse into the Greenhouse—A Late Paleozoic Analog for Modern Global Vegetational Change. GSA Today, 6(10): 1–7Google Scholar
  19. Goeppert, H. R., 1864–1865. Die Fossile Flora der Permischen Formation. Palaeontographica (1846–1933), 12: 1–316Google Scholar
  20. Haas, H., 1975. Arthroxylon werdensis N. sp.—Ein Calamit aus dem Namur C des Ruhrkarbons mit Vollständig Erhaltenen Geweben. Argumenta Palaeobotanica, 4: 139–154Google Scholar
  21. Hauke, R. L., 1963. A Taxonomic Monograph of the Genus Equisetum subgenus Hippochaete. Nova Hedwigia, Beihefte, 8: 1–123Google Scholar
  22. Hauke, R. L., 1979. A Taxonomic Monograph of Equisetum subgenus Equisetum. Nova Hedwigia, 30(1/2/3/4): 385–456. https://doi.org/10.1127/nova.hedwigia/30/1979/385CrossRefGoogle Scholar
  23. Hilton, J., Wang, S. J., Galtier, J., et al., 2001. An Early Permian Plant Assemblage from the Taiyuan Formation of Northern China with Compression/Impression and Permineralized Preservation. Review of Palaeobotany and Palynology, 114(3/4): 175–189. https://doi.org/10.1016/s0034-6667(01)00045-8CrossRefGoogle Scholar
  24. Hilton, J., Wang, S. J., Zhu, W. Q., et al., 2002. Callospermarion Ovules from the Early Permian of Northern China: Palaeofloristic and Palaeogeographic Significance of Callistophytalean Seed-Ferns in the Cathaysian Flora. Review of Palaeobotany and Palynology, 120(3/4): 301–314. https://doi.org/10.1016/s0034-6667(02)00084-2CrossRefGoogle Scholar
  25. Hirmer, M., 1927. Handbuch der Paläobotanik. Oldenbourg, München-Berlin. 1–708Google Scholar
  26. Knoell, H., 1935. Zur Kenntnis der Strukturbietenden Pflanzenreste des Jüngeren Paläozoikums: 4. Zur Systematik der Strukturbietenden Calamiten der Gattung Arthropitys Goeppert aus dem Mittleren Oberkarbon Westdeutschlands und Englands. Palaeontographica Abteilung B-Palaophytologie, 80: 1–51Google Scholar
  27. Li, C. X., Lu, S. G., Yang, Q., 2004. Advances in the Studies of the Origin and Systematics of Pteridophytes. Chinese Bulletin of Botany, 21(4): 478–485 (in Chinese with English Abstract)Google Scholar
  28. Li, X. X., Shen, G. L., Tian, B., et al., 1995. Some Notes of the Carboniferous and Permian Floras in China. In: Li, X. X., ed., Fossil Floras of China through the Geological Ages (English Edition). Guangdong Sci ence and Technology Press, Guangzhou. 244–304Google Scholar
  29. Meyen, S. V., 1981. Some True and Alleged Permo-Triassic Conifers of Siberia and Russian Platform and Their Alliance. The Palaeobotanist, 28/29: 161–176Google Scholar
  30. Meyen, S. V., 1982. The Carboniferous and Permian Floras of Angaraland (a Synthesis). Biological Memoirs, 7: 1–109Google Scholar
  31. Neregato, R., Rößler, R., Rohn, R., et al., 2015. New Petrified Calamitaleans from the Permian of the Parnaíba Basin, Central-North Brazil. Part I. Review of Palaeobotany and Palynology, 215: 23–45. https://doi.org/10.13039/501100003593CrossRefGoogle Scholar
  32. Pfefferkorn, H. W., Archer, A. W., Zodrow, E. L., 2001. Modern Tropical Analogs for Carboniferous Standing Forests: Comparison of Extinct Mesocalamites with Extant Montrichardia. Historical Biology, 15(3): 235–250. https://doi.org/10.1080/10292380109380595CrossRefGoogle Scholar
  33. Reed, F. D., 1952. Arthroxylon, a Redefined Genus of Calamite. Annals of the Missouri Botanical Garden, 39(3): 173–187. https://doi.org/10.2307/2394522CrossRefGoogle Scholar
  34. Renault, B., 1896. Notice sur les Calamariées. Suite. II. Bulletin de la Société dʼHistoire Naturelle dʼAutun, 9: 305–354Google Scholar
  35. Rößler, R., Feng, Z., Noll, R., 2012. The Largest Calamite and Its Growth Architecture—Arthropitys bistriata from the Early Permian Petrified Forest of Chemnitz. Review of Palaeobotany and Palynology, 185: 64–78. https://doi.org/10.1016/j.revpalbo.2012.07.018CrossRefGoogle Scholar
  36. Rößler, R., Noll, R., 2010. Anatomy and Branching of Arthropitys bistriata (Cotta) Goeppert—New Observations from the Permian Petrified Forest of Chemnitz, Germany. International Journal of Coal Geology, 83(2/3): 103–124. https://doi.org/10.1016/j.coal.2009.07.011CrossRefGoogle Scholar
  37. Röβler, R., Noll, R., 2007. Calamitea Cotta, the Correct Name for Calamitean Sphenopsids Currently Classified as Calamodendron Brongniart. Review of Palaeobotany and Palynology, 144(3/4): 157–180. https://doi.org/10.1016/j.revpalbo.2006.08.001Google Scholar
  38. Scotese, C. R., 2001. Atlas of Earth History, Volume 1, Paleogeography. PALEOMAP Project, Arlington, Texas. 1–52Google Scholar
  39. Scott, A. C., 1979. The Ecology of Coal Measure Floras from Northern Britain. Proceedings of the Geologistsʼ Association, 90(3): 97–116. https://doi.org/10.1016/s0016-7878(79)80013-9CrossRefGoogle Scholar
  40. Şengör, A. M. C., Natalʼin, B. A., 1996. Paleotectonics of Asia: Fragments of a Synthesis. In: Yin, A., Harrison, T. M., eds., The Tectonic Evolution of Asia. Cambridge University Press, New York. 486–640Google Scholar
  41. Shi, X., Yu, J. X., Li, H., et al., 2014. Xinjiangoxylon gen. nov., a New Gymnosperm from the Latest Permian of China. Acta Geologica Sinica—English Edition, 88(5): 1356–1363. https://doi.org/10.1111/1755-6724.12303CrossRefGoogle Scholar
  42. Sze, H. C., 1934. On the Occurrence of an Interesting Fossil Wood from Urumchi (Tihua), Sinkiang. Bulletin of Geological Society of China, 13(4): 581–592. https://doi.org/10.1111/j.1755-6724.1934.mp13001030.xCrossRefGoogle Scholar
  43. Taylor, T. N., Taylor, E. L., Krings, M., 2009. Paleobotany: The Biology and Evolution of Fossil Plants. 2nd Ed. Elsevier Science and Technolology, Amsterdam. 1–1230CrossRefGoogle Scholar
  44. Tian, B. L., Wang, S. J., Guo, Y. T., et al., 1996a. Flora of Palaeozoic Coal Balls in China. The Palaeobotanist, 45: 247–254Google Scholar
  45. Tian, B. L., Hu, T., Zhao, H., 1996b. The First Discovery of Walchiopremnon gaoi sp. nov. in China. China Coal Industry Publishing House, Beijing. 118–125 (in Chinese with English Abstract)Google Scholar
  46. Tian, B. L., Li, H. Q., 1992. A New Special Petrified Stem, Guizhouoxylon dahebianense gen. et sp. nov., from the Upper Permian in Shuicheng District, Guizhou, China. Acta Palaeontologica Sinica, 31(3): 336–345 (in Chinese with English Abstract)Google Scholar
  47. Wan, M. L., Yang, W., Wang, J., 2014. Septomedullopitys szei Sp. Nov., a New Gymnospermous Wood from Lower Wuchiapingian (Upper Permian) Continental Deposits of NW China, and Its Implication for a Weakly Seasonal Humid Climate in Mid-Latitude NE Pangaea. Palaeogeography, Palaeoclimatology, Palaeoecology, 407: 1–13. https://doi.org/10.1016/j.palaeo.2014.04.011Google Scholar
  48. Wang, J., 2000. Permian Wood from Inner Mongolia, North China: With Special Reference to Palaeozoic Climate Change of North China Block. The Palaeobotanist, 49: 353–370Google Scholar
  49. Wang, S. J., Hilton, J., Galtier, J., et al., 2006. A Large Anatomically Preserved Calamitean Stem from the Upper Permian of Southwest China and Its Implications for Calamitean Development and Functional Anatomy. Plant Systematics and Evolution, 261(1/2/3/4): 229–244. https://doi.org/10.1007/s00606-006-0434-9CrossRefGoogle Scholar
  50. Wang, S. J., Li, S. S., Hilton, J., et al., 2003. A New Species of the Sphenopsid Stem Arthropitys from Late Permian Volcaniclastic Sediments of China. Review of Palaeobotany and Palynology, 126(1/2): 65–81. https://doi.org/10.1016/s0034-6667(03)00059-9CrossRefGoogle Scholar
  51. Wang, Z. Q., 1985. Palaeovegetation and Plate Tectonics: Palaeophytogeography of North China during Permian and Triassic Times. Palaeogeography, Palaeoclimatology, Palaeoecology, 49(1/2): 25–45. https://doi.org/10.1016/0031-0182(85)90003-3Google Scholar
  52. Wei, H. B., Feng, Z., Yang, J. Y., et al., 2015. Specialised Emission Pattern of Leaf Trace in a Late Permian (253 Million-Years Old) Conifer. Scientific Reports, 5(1): 12405. https://doi.org/10.1038/srep12405CrossRefGoogle Scholar
  53. Wei, X. X., Zhang, X. H., Shi, G. R., et al., 2016. First Report of a Phytogeographically Mixed (Transitional) Middle–Late Permian Fossil Wood Assemblage from the Hami Area, Northwest China, and Implications for Permian Phytogeographical, Paleogeographical and Paleoclimatic Evolution in Central Asia. Palaeogeography, Palaeoclimatology, Palaeoecology, 448: 125–140. https://doi.org/10.13039/501100002821CrossRefGoogle Scholar
  54. Writing Group of Regional Stratigraphic Table of the Xinjiang Uygur Autonomous Region (WGRSTXUAR), 1981. Regional Stratigraphic Table of the Northwest Region of China: The Fascicle of the Xinjiang Uygur Autonomous Region. Geological Publishing House, Beijing. 155–167 (in Chinese)Google Scholar
  55. Wu, S. H., Ching, R. C., 1991. Fern Families and Genera of China. Science Press, Beijing. 1–630 (in Chinese)Google Scholar
  56. Yang, G. X., 1994. Palaeobotany. Geological Publishing House, Beijing. 71–93 (in Chinese)Google Scholar
  57. Yang, W. Q., Feng, Q. L., Liu, Y. Q., et al., 2010. Depositional Environments and Cyclo-and Chronostratigraphy of Uppermost Carboniferous–Lower Triassic Fluvial-Lacustrine Deposits, Southern Bogda Mountains, NW China—A Terrestrial Paleoclimatic Record of Mid-Latitude NE Pangea. Global and Planetary Change, 73(1/2): 15–113. https://doi.org/10.1016/j.gloplacha.2010.03.008CrossRefGoogle Scholar
  58. Yang, W. Q., Liu, Y. Q., Feng, Q. L., et al., 2007. Sedimentary Evidence of Early–Late Permian Mid-Latitude Continental Climate Variability, Southern Bogda Mountains, NW China. Palaeogeography, Palaeoclimatology, Palaeoecology, 252(1/2): 239–258. https://doi.org/10.1016/j.palaeo.2006.11.045CrossRefGoogle Scholar
  59. Ziegler, A. M., Hulver, M. L., Rowley, D. B., 1997. Permian World Topography and Climate. In: Martini, I. P., ed., Late Glacial and Postglacial Environmental Changes: Pleistocene, Carboniferous–Permian, and Proterozoic. Oxford University Press, Oxford. 111–146Google Scholar

Copyright information

© China University of Geosciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Biogeology and Environmental Geology, School of Earth SciencesChina University of GeosciencesWuhanChina
  2. 2.College of Earth SciencesJilin UniversityChangchunChina
  3. 3.Key-Lab for Evolution of Past Life and Environment in Northeast Asia, Ministry of EducationJilin UniversityChangchunChina

Personalised recommendations