Skip to main content
Log in

Drainage Responses to the Activity of the Langshan Range-Front Fault and Tectonic Implications

  • Structural Geology and Active Tectonics
  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

Langshan, a monoclinic mountain, which started to uplift since Oligocene, bounds the northwest margin of the Hetao Basin. The continuous activity of the active normal Langshan range-front fault forms the typical basin-and-range landform in Langshan area and controls the landform evolution of Langshan. Langshan is an ideal place to study relationship between quantitative geomorphological index and active deformation. According to study on knickpoints, fitting on longitudinal channel profiles and steepness index, we demonstrate that the main controlling factors on distribution of normalized steepness index of channels are not climate (precipitation), lithology, sediment flux, but tectonic factor, or the activity of Langshan range-front fault. The short channels in southeast flank, whose lengths are shorter than 16 km, may be still in the non-steady status. If not considering these short channels, the distribution of normalized steepness index along the Langshan range-front fault appears like M-shape pattern, while the normalized steepness index in the middle section is higher than those at both ends. This pattern is well consistent with geometrical segmentation model of the Langshan range-front fault. Combining previous active tectonic research on Langshan range-front fault, which demonstrates the Langshan range-front fault has been in the stage of linkup, we reasonably infer the Langshan range-front fault now is the result of linkup of both fault which continuously bilaterally extended independently. Our tectonic geomorphological study also supports the conclusion that the Langshan range-front fault has been in the stage of linkup. The formation of several knickpoints due to tectonic factor may have been caused by slip-rate variation because of linkup of both independent faults. Based on cognition above, we also proposed the geological and geomorphological evolutionary model of the Langshan range-front fault since Oligocene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Ackermann, R. V., Schlische, R. W., Withjack, M. O., 2001. The Geometric and Statistical Evolution of Normal Fault Systems: An Experimental Study of the Effects of Mechanical Layer Thickness on Scaling Laws. Journal of Structural Geology, 23(11): 1803–1819. https://doi.org/10.1016/s0191-8141(01)00028-1

    Article  Google Scholar 

  • Arrowsmith, J. R., Zielke, O., 2009. Tectonic Geomorphology of the San Andreas Fault Zone from High Resolution Topography: An Example from the Cholame Segment. Geomorphology, 113(1/2): 70–81. https://doi.org/10.1016/j.geomorph.2009.01.002

    Article  Google Scholar 

  • Blevins, M., 2008. Deciphering Controls on Polyphase Intraplate Deformation in the Ertomiao Region, Lang Shan, North-Central China: [Dissertation]. Louisiana State University, Baton Rouge

    Google Scholar 

  • Boulton, S. J., Whittaker, A. C., 2009. Quantifying the Slip Rates, Spatial Distribution and Evolution of Active Normal Faults from Geomorphic Analysis: Field Examples from an Oblique-Extensional Graben, Southern Turkey. Geomorphology, 104(3/4): 299–316. https://doi.org/10.1016/j.geomorph.2008.09.007

    Article  Google Scholar 

  • Bull, W. B., 1977. Tectonic Geomorphology North and South of the Garlock Fault, California. Geomorphology in Arid Regions, Proceeding 8th Annual Geomorphology Symposium. State University New York at Binghamton, Binghamton. 115–137

    Google Scholar 

  • Burbank, D. W., Anderson, R. S., 2011. Tectonic Geomorphology. John Wiley & Sons, Chichester. 454

    Book  Google Scholar 

  • Chen, L., 2002. The Research on Paleoearthquake, the Recerrence Rule of Strong Earthquakes and Possible Sites of Strong Earthquakes in the Future of Hetao Basin: [Dissertation]. Institute of Geology, China Earthquake Administration, Beijing (in Chinese with English Abstract)

    Google Scholar 

  • Chen, Y., 2004. Morphotectoic Features of Taiwan Mountain Belt Based on Hypsometric Integral, Topographic Fractals and SL Index, Tainan: [Dissertation]. Cheng Kung University, Tainan

    Google Scholar 

  • Chen, Y., Song, G., Chen, Z., 2006. Stream Power Incision Model for Non-steady State Orogens. Chinese Science Bulletin, 51 (7): 865–869 (in Chinese)

    Google Scholar 

  • Chen, Y. C., Sung, Q., Cheng, K. Y., 2003. Along-Strike Variations of Morphotectonic Features in the Western Foothills of Taiwan: Tectonic Implications Based on Stream-Gradient and Hypsometric Analysis. Geomorphology, 56(1/2): 109–137. https://doi.org/10.1016/s0169-555x(03)00059-x

    Article  Google Scholar 

  • Cheng, S., Li, C., Yang, G., et al., 2006. The Denudational-Surface Sequence and Controls on the Landscape Development in the Langshan Mountains-Seertengshan Mountains, Inner Mongolia. Quaternary Sciences, 26(1): 99–107 (in Chinese with English Abstract)

    Google Scholar 

  • Crosby, C. J., Arrowsmith, J. R., Prentice, C. S., 2007. Application of LiDAR Data to Constraining a Late Pleistocene Slip Rate and Vertical Deformation of the Northern San Andreas Fault, Fort Ross to Mendocino, California, USA: [Dissertation]. Arizona State University, Phoenix

    Google Scholar 

  • Deng, Q., 2007. Active Tectonic Map of China. Earthquake Press, Beijing (in Chinese)

    Google Scholar 

  • Deng, Q., Cheng, S., Min, W., et al., 1999. Discussion on Cenozoic Tectonics and Dynamics of Ordos Block. Journal of Geomechanics, 5(3): 13–21 (in Chinese with English Abstract)

    Google Scholar 

  • Densmore, A. L., Dawers, N. H., Gupta, S., et al., 2003. Landscape Evolution at Extensional Relay Zones. Journal of Geophysical Research: Solid Earth, 108(B5): B52273. https://doi.org/10.1029/2001jb001741

    Google Scholar 

  • Dong, S. P., 2016. Late Quaternary Tectonic Activity and Paleoseismology along the Langshan Range-Front Fault: [Dissertation]. Institute of Geology, China Earthquake Administration, Beijing (in Chinese with English Abstract)

    Google Scholar 

  • Dong, S. P., Zhang, P. Z., Zheng, W., et al., Paleoseismic and Slip-Rate Observations along the Langshan Range-Front Fault, Hetao Basin, China. (in Press)

  • Duvall, A., Kirby, E., Burbank, D., 2004. Tectonic and Lithologic Controls on Bedrock Channel Profiles and Processes in Coastal California. Journal of Geophysical Research, 109(F3): F03002. https://doi.org/10.1029/2003jf000086

    Article  Google Scholar 

  • Farr, T. G., Rosen, P. A., Caro, E., et al., 2007. The Shuttle Radar Topography Mission. Reviews of Geophysics, 45(2): RG2004. https://doi.org/10.1029/2005rg000183

    Article  Google Scholar 

  • Geology Bureau of Inner Mongolia Municipality (GBIMM), 1976. Regional Geological Map of Inner Mongolia, Scale 1: 200 000. Seismological Press, Beijing (in Chinese)

    Google Scholar 

  • Hack, J. T., 1957. Studies of Longitudinal Stream Profiles in Virginia and Maryland. US Government Printing Office, Washington. 294

    Google Scholar 

  • Hack, J. T., 1973. Stream-Profile Analysis and Stream-Gradient Index. Journal of Research of the US Geological Survey, 1(4): 421–429

    Google Scholar 

  • Hare, P. W., Gardner, T., 1985. Geomorphic Indicators of Vertical Neotectonism along Converging Plate Margins, Nicoya Peninsula, Costa Rica. Allen and Unwin, Boston. 75–104

    Google Scholar 

  • Howard, A. D., Kerby, G., 1983. Channel Changes in Badlands. Geological Society of America Bulletin, 94(6): 739–752. https://doi.org/10.1130/0016-7606(1983)94<739:ccib>2.0.co;2

    Article  Google Scholar 

  • Howard, A. D., 1994. A Detachment-Limited Model of Drainage Basin Evolution. Water Resources Research, 30(7): 2261–2285. https://doi.org/10.1029/94wr00757

    Article  Google Scholar 

  • Howard, A. D., Dietrich, W. E., Seidl, M. A., 1994. Modeling Fluvial Erosion on Regional to Continental Scales. Journal of Geophysical Research: Solid Earth, 99(B7): 13971–13986. https://doi.org/10.1029/94jb00744

    Article  Google Scholar 

  • Hu, X. F., Pan, B. T., Kirby, E., et al., 2010. Spatial Differences in Rock Uplift Rates Inferred from Channel Steepness Indices along the Northern Flank of the Qilian Mountain, Northeast Tibetan Plateau. Chinese Science Bulletin, 55(27/28): 3205–3214. https://doi.org/10.1007/s11434-010-4024-4

    Article  Google Scholar 

  • Jackson, J., McKenzie, D., 1983. The Geometrical Evolution of Normal Fault Systems. Journal of Structural Geology, 5(5): 471–482. https://doi.org/10.1016/0191-8141(83)90053-6

    Article  Google Scholar 

  • Jia, L. Y., Zhang, X. J., He, Z. X., et al., 2015. Late Quaternary Climatic and Tectonic Mechanisms Driving River Terrace Development in an Area of Mountain Uplift: A Case Study in the Langshan Area, Inner Mongolia, Northern China. Geomorphology, 234: 109–121. https://doi.org/10.13039/501100004613

    Article  Google Scholar 

  • Jia, L. Y., Zhang, X. J., Ye, P. S., et al., 2016. Development of the Alluvial and Lacustrine Terraces on the Northern Margin of the Hetao Basin, Inner Mongolia, China: Implications for the Evolution of the Yellow River in the Hetao Area since the Late Pleistocene. Geomorphology, 263: 87–98. https://doi.org/10.1016/j.geomorph.2016.03.034

    Article  Google Scholar 

  • Kirby, E., Whipple, K. X., 2012. Expression of Active Tectonics in Erosional Landscapes. Journal of Structural Geology, 44: 54–75. https://doi.org/10.1016/j.jsg.2012.07.009

    Article  Google Scholar 

  • Kirby, E., Whipple, K. X., 2001. Quantifying Differential Rock-Uplift Rates Via Stream Profile Analysis. Geology, 29(5): 415–418. https://doi.org/10.1130/0091-7613(2001)029<0415:qdrurv>2.0.co;2

    Article  Google Scholar 

  • Kirby, E., Whipple, K. X., Tang, W. Q., et al., 2003. Distribution of Active Rock Uplift along the Eastern Margin of the Tibetan Plateau: Inferences from Bedrock Channel Longitudinal Profiles. Journal of Geophysical Research: Solid Earth, 108(B4). https://doi.org/10.1029/2001jb000861

    Google Scholar 

  • Li, Y., Ran, Y., Chen, L., et al., 2015. The Latest Surface Rupture Events on the Major Active Faults and Great Historical Earthquakes in Hetao Fault-Depression Zone. Seismol. Geol., 37(1): 110–125. http://dx.doi.org/10.3969/j.issn.0253-4967.2015.01.009 (in Chinese with English Abstract)

    Google Scholar 

  • Li, X., Wang, J., Xiong, R., et al., 2016. The Response of the Change Channel Steepness Index to the Difference of Uplift Rate in the Liupanshan Mountain Area. Quaternary Sciences, 36(2): 443–452 (in Chinese with English Abstract)

    Google Scholar 

  • Manighetti, I., King, G., Sammis, C. G., 2004. The Role of Off-Fault Damage in the Evolution of Normal Faults. Earth and Planetary Science Letters, 217(3/4): 399–408. https://doi.org/10.1016/s0012-821x(03)00601-0

    Article  Google Scholar 

  • Moglen, G. E., Bras, R. L., 1995. The Effect of Spatial Heterogeneities on Geomorphic Expression in a Model of Basin Evolution. Water Resources Research, 31(10): 2613–2623. https://doi.org/10.1029/95wr02036

    Article  Google Scholar 

  • Molnar, P., Anderson, R. S., Anderson, S. P., 2007. Tectonics, Fracturing of Rock, and Erosion. Journal of Geophysical Research, 112(F3). https://doi.org/10.1029/2005jf000433

    Google Scholar 

  • Montgomery, D. R., Foufoula-Georgiou, E., 1993. Channel Network Source Representation Using Digital Elevation Models. Water Resources Research, 29(12): 3925–3934. https://doi.org/10.1029/93wr02463

    Article  Google Scholar 

  • Montgomery, D. R., 2001. Slope Distributions, Threshold Hillslopes, and Steady-State Topography. American Journal of Science, 301(4/5): 432–454. https://doi.org/10.2475/ajs.301.4-5.432

    Article  Google Scholar 

  • Papanikolaou, I. D., Roberts, G. P., 2007. Geometry, Kinematics and Deformation Rates along the Active Normal Fault System in the Southern Apennines: Implications for Fault Growth. Journal of Structural Geology, 29(1): 166–188. https://doi.org/10.1016/j.jsg.2006.07.009

    Article  Google Scholar 

  • Poage, M. A., Chamberlain, C. P., 2001. Empirical Relationships between Elevation and the Stable Isotope Composition of Precipitation and Surface Waters: Considerations for Studies of Paleoelevation Change. American Journal of Science, 301(1): 1–15. https://doi.org/10.2475/ajs.301.1.1

    Article  Google Scholar 

  • Rao, G., Chen, P., Hu, J. M., et al., 2016. Timing of Holocene Paleo-Earthquakes along the Langshan Piedmont Fault in the Western Hetao Graben, North China: Implications for Seismic Risk. Tectonophysics, 677/678: 115–124. https://doi.org/10.13039/501100001809

    Article  Google Scholar 

  • Rãdoane, M., Rãdoane, N., Dumitriu, D., 2003. Geomorphological Evolution of Longitudinal River Profiles in the Carpathians. Geomorphology, 50(4): 293–306. https://doi.org/10.1016/s0169-555x(02)00194-0

    Article  Google Scholar 

  • Research Group on “Active Fault Zone around Ordos”, 1988. Active Fault Zone around Ordos. Earthquake Publishing House, Beijing (in Chinese)

    Google Scholar 

  • Roberts, G. P., Michetti, A. M., 2004. Spatial and Temporal Variations in Growth Rates along Active Normal Fault Systems: An Example from the Lazio-Abruzzo Apennines, Central Italy. Journal of Structural Geology, 26(2): 339–376. https://doi.org/10.1016/s0191-8141(03)00103-2

    Article  Google Scholar 

  • Rockwell, T. K., Keller, E. A., Clark, M. N., et al., 1984. Chronology and Rates of Faulting of Ventura River Terraces, California. Geological Society of America Bulletin, 95(12): 1466–1474. https://doi.org/10.1130/0016-7606(1984)95<1466:carofo>2.0.co;2

    Article  Google Scholar 

  • Schumm, S. A., Schumm, S. A., Dumont, J. F., et al., 2002. Active Tectonics and Alluvial Rivers. Cambridge University Press, Cambridge

    Google Scholar 

  • Sklar, L., Dietrich, W. E., 1998. River Longitudinal Profiles and Bedrock Incision Models: Stream Power and the Influence of Sediment Supply. In: Tinkler, K. J., Wohl, E. E., eds., Rivers over Rock: Fluvial Processes in Bedrock Channels. American Geophysical Union. 237–260

  • Snow, R. S., Slingerland, R. L., 1987. Mathematical Modeling of Graded River Profiles. The Journal of Geology, 95(1): 15–33. https://doi.org/10.1086/629104

    Article  Google Scholar 

  • Snow, R. S., Slingerland, R. L., 1990. Stream Profile Adjustment to Crustal Warping: Nonlinear Results from a Simple Model. The Journal of Geology, 98(5): 699–708. https://doi.org/10.1086/629434

    Article  Google Scholar 

  • Snyder, N. P., Whipple, K. X., Tucker, G. E., et al., 2000. Landscape Response to Tectonic Forcing: Digital Elevation Model Analysis of Stream Profiles in the Mendocino Triple Junction Region, Northern California. Geological Society of America Bulletin, 112(8): 1250–1263. https://doi.org/10.1130/0016-7606(2000)112<1250:lrttfd>2.0.co;2

    Article  Google Scholar 

  • Snyder, N. P., Whipple, K. X., Tucker, G. E., et al., 2003. Channel Response to Tectonic Forcing: Field Analysis of Stream Morphology and Hydrology in the Mendocino Triple Junction Region, Northern California. Geomorphology, 53(1/2): 97–127. https://doi.org/10.1016/s0169-555x(02)00349-5

    Article  Google Scholar 

  • Stock, J. D., Montgomery, D. R., 1999. Geologic Constraints on Bedrock River Incision Using the Stream Power Law. Journal of Geophysical Research: Solid Earth, 104(B3): 4983–4993. https://doi.org/10.1029/98jb02139

    Article  Google Scholar 

  • Strahler, A. N., 1952. Hypsometric (Area-Altitude) Analysis of Erosional Topography. Geological Society of America Bulletin, 63(11): 1117–1142. https://doi.org/10.1130/0016-7606(1952)63[1117:haaoet]2.0.co;2

    Article  Google Scholar 

  • Summerfield, M. A., 2000. Geomorphology & Global Tectonics. John Wiley & Sons Inc., Hoboken

    Google Scholar 

  • Tarboton, D. G., Bras, R. L., Rodriguez-Iturbe, I., 1989. Scaling and Elevation in River Networks. Water Resources Research, 25(9): 2037–2051. https://doi.org/10.1029/wr025i009p02037

    Article  Google Scholar 

  • Wallace, R. E., 1977. Profiles and Ages of Young Fault Scarps, North-Central Nevada. Geological Society of America Bulletin, 88(9): 1267–1281. https://doi.org/10.1130/0016-7606(1977)88<1267:paaoyf>2.0.co;2

    Article  Google Scholar 

  • Wang, N., Han, Z., Li, X., et al., 2015. Tectonic Uplift of Mt. Lushan Indicated by the Steepness Indices of the River Longitudinal Profiles. Acta Geographica Sinica, 70(9): 1516–1525 (in Chinese with English Abstract)

    Google Scholar 

  • Wen, X. Z., 2001. Earthquake Behavior of Variable Rupture-Scale on Active Faults and Application of the Cascade-Rupturing Model. Acta Seismologica Sinica, 14(4): 404–416. https://doi.org/10.1007/s11589-001-0118-z

    Article  Google Scholar 

  • Whipple, K. X., Tucker, G. E., 1999. Dynamics of the Stream-Power River Incision Model: Implications for Height Limits of Mountain Ranges, Landscape Response Timescales, and Research Needs. Journal of Geophysical Research: Solid Earth, 104(B8): 17661–17674. https://doi.org/10.1029/1999jb900120

    Article  Google Scholar 

  • Whipple, K. X., 2004. Bedrock Rivers and the Geomorphology of Active Orogens. Annual Review of Earth and Planetary Sciences, 32(1): 151–185. https://doi.org/10.1146/annurev.earth.32.101802.120356

    Article  Google Scholar 

  • Whipple, K. X., Hancock, G. S., Anderson, R. S., 2000. River Incision into Bedrock: Mechanics and Relative Efficacy of Plucking, Abrasion, and Cavitation. Geological Society of America Bulletin, 112(3): 490–503. https://doi.org/10.1130/0016-7606(2000)112<490:riibma>2.0.co;2

    Article  Google Scholar 

  • Whittaker, A. C., Attal, M., Cowie, P. A., et al., 2008. Decoding Temporal and Spatial Patterns of Fault Uplift Using Transient River Long Profiles. Geomorphology, 100(3/4): 506–526. https://doi.org/10.1016/j.geomorph.2008.01.018

    Article  Google Scholar 

  • Wobus, C., Whipple, K. X., Kirby, E., et al., 2006. Tectonics from Topography: Procedures, Promise, and Pitfalls. Geological Society of America Special Papers, 398: 55–74

    Google Scholar 

  • Xia, X. P., Sun, M., Zhao, G. C., et al., 2006. U-Pb and Hf Isotopic Study of Detrital Zircons from the Wulashan Khondalites: Constraints on the Evolution of the Ordos Terrane, Western Block of the North China Craton. Earth and Planetary Science Letters, 241(3/4): 581–593. https://doi.org/10.1016/j.epsl.2005.11.024

    Article  Google Scholar 

  • Yang, Y. T., Li, W., Ma, L., 2005. Tectonic and Stratigraphic Controls of Hydrocarbon Systems in the Ordos Basin: A Multicycle Cratonic Basin in Central China. AAPG Bulletin, 89(2): 255–269. https://doi.org/10.1306/10070404027

    Article  Google Scholar 

  • Zhao, H., Li, Y., Yang, J., et al., 2009. The Longitudinal Profiles of the Ten Rivers in North Tianshan Mountains and Their Tectonic Significance. Acta Geographica Sinica, 64(5): 563–570 (in Chinese with English Abstract)

    Google Scholar 

  • Zhu, R. X., Chen, L., Wu, F. Y., et al., 2011. Timing, Scale and Mechanism of the Destruction of the North China Craton. Science China Earth Sciences, 54(6): 789–797. https://doi.org/10.1007/s11430-011-4203-4

    Article  Google Scholar 

  • Zhu, R. X., Xu, Y. G., Zhu, G., et al., 2012. Destruction of the North China Craton. Science China Earth Sciences, 55(10): 1565–1587. https://doi.org/10.1007/s11430-012-4516-y

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded jointly by the National Natural Science Foundation of China (Nos. 41402187, 41372220, 41590861, 41661134011). The authors’ sincere thanks go to Su Qi for his technological assistant on geomorphological index extraction. We also express our deep appreciation to the anonymous reviewers for their excellent comments that helped us improve our paper. The final publication is available at Springer via https://doi.org/10.1007/s12583-017-0902-8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaopeng Dong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, S., Zhang, P., Zhang, H. et al. Drainage Responses to the Activity of the Langshan Range-Front Fault and Tectonic Implications. J. Earth Sci. 29, 193–209 (2018). https://doi.org/10.1007/s12583-017-0902-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-017-0902-8

Key words

Navigation