Advertisement

Journal of Earth Science

, Volume 29, Issue 1, pp 210–222 | Cite as

Folded Radiolarite Unit as a Kinematic Indicator of the Zagros Collision Processes, Southwestern Iran

  • Abdolreza Partabian
  • Ahmad Nourbakhsh
  • Khalil Sarkarinejad
Structural Geology and Active Tectonics
  • 361 Downloads

Abstract

Radiolarites have an important role in the reconstruction of the paleogeography, bathymetry and their coexistence with ophiolites gives an opportunity to determine the tectonic history of collisional zones. The radiolarite units of the southwestern Neyriz are part of the Zagros accretionary prism and positioned beneath the thick bedded carbonate sediments of Tarbur Formation. The existing various structural elements within this unit give a unique fortunate for investigation on the deformation history and studying of the kinematics of the Zagros collision zone. The numerous evidence show that this unit has experienced different deformation conditions during ongoing evolution, including ductile, brittle-ductile and brittle deformation conditions. The main strike of E-W for axial planes of folds, eastward trend and plunge of fold axes, boudins’ neck axes and Type III of the fold interference patterns are indicators of formation and evolution of folds during transpressional deformation. Structural evolution of the study area has been affected by an NE-dipping subduction zone of Neo-Tethyan oceanic lithosphere below the Iranian microcontinents. These structural elements suggest that high mechanical anisotropy and two successive generations of folding simultaneously with thrusting and extrusion of this unit had led to formation and evolution of this highly asymmetrical folded unit on top of the subducted oceanic crust.

Key words

Iran Zagros suture zone kinematic indicator transpression deformation conditions 

Notes

Acknowledgments

The authors wish to thank V. Akbari and Sh. Ansari for their help during field works. This research was supported by University of Sistan and Baluchestan and the Shiraz University Research Council (SURC) grant which are gratefully acknowledged. The final publication is available at Springer via https://doi.org/10.1007/s12583-017-0820-y.

References Cited

  1. Agard, P., Omrani, J., Jolivet, L., et al., 2005. Convergence History across Zagros (Iran): Constraints from Collisional and Earlier Deformation. International Journal of Earth Sciences, 94(3): 401–419. https://doi.org/10.1007/s00531-005-0481-4CrossRefGoogle Scholar
  2. Agard, P., Omrani, J., Jolivet, L., et al., 2011. The Zagros: A Subduction-Dominated Process. In: Grasemann, B., Simpson, G., eds., Geodynamic Evolution of the Zagros. Geological Magazine, 148: 692–725CrossRefGoogle Scholar
  3. Alavi, M., 1994. Tectonics of the Zagros Orogenic Belt of Iran: New Data and Interpretations. Tectonophysics, 229(3/4): 211–238. https://doi.org/10.1016/0040-1951(94)90030-2CrossRefGoogle Scholar
  4. Alavi, M., 2004. Regional Stratigraphy of the Zagros Fold-Thrust Belt of Iran and Its Proforeland Evolution. American Journal of Science, 304: 1–20CrossRefGoogle Scholar
  5. Ao, S. J., Xiao, W. J., Khalatbari Jafari, M., et al., 2016. U-Pb Zircon Ages, Field Geology and Geochemistry of the Kermanshah Ophiolite (Iran): From Continental Rifting at 79 Ma to Oceanic Core Complex at Ca. 36 Ma in the Southern Neo-Tethys. Gondwana Research, 31: 305–318. https://doi.org/10.13039/501100002367CrossRefGoogle Scholar
  6. Arslan, A., Passchier, C. W., Koehn, D., 2008. Foliation Boudinage. Journal of Structural Geology, 30(3): 291–309. https://doi.org/10.1016/j.jsg.2007.11.004CrossRefGoogle Scholar
  7. Berberian, M., 1976. Seismotectonic Map of Iran, 1: 2 500 000. Geological Survey of Iran, Tehran. Report No. 39Google Scholar
  8. Berberian, M., King, G. C. P., 1981. Towards a Paleogeography and Tectonic Evolution of Iran: Reply. Canadian Journal of Earth Sciences, 18(11): 1764–1766. https://doi.org/10.1139/e81-163CrossRefGoogle Scholar
  9. Cande, S. C., Leslie, R. B., 1986. Late Cenozoic Tectonics of the Southern Chile Trench. Journal of Geophysical Research, 91(B1): 471–496. https://doi.org/10.1029/jb091ib01p00471CrossRefGoogle Scholar
  10. Chapple, W. M., Spang, J. H., 1974. Significance of Layer-Parallel Slip during Folding of Layered Sedimentary Rocks. Geological Society of America Bulletin, 85(10): 1523–1534. https://doi.org/10.1130/0016-7606(1974)85<1523:solsdf>2.0.co;2CrossRefGoogle Scholar
  11. Cobbold, P. R., Cosgrove, J. W., Summers, J. M., 1971. Development of Internal Structures in Deformed Anisotropic Rocks. Tectonophysics, 12(1): 23–53. https://doi.org/10.1016/0040-1951(71)90065-5CrossRefGoogle Scholar
  12. Dahlen, F. A., Suppe, J., Davis, D., 1984. Mechanics of Fold-and-Thrust Belts and Accretionary Wedges: Cohesive Coulomb Theory. Journal of Geophysical Research, 89(B12): 10087–10101CrossRefGoogle Scholar
  13. Davis, D., Suppe, J., Dahlen, F. A., 1983. Mechanics of Fold-and-Thrust Belts and Accretionary Wedges. Journal of Geophysical Research, 88(B2): 1153–1172. https://doi.org/10.1029/jb088ib02p01153CrossRefGoogle Scholar
  14. Delaloye, M., Desmons, J., 1980. Ophiolites and Melange Terranes in Iran: A Geochronological Study and Its Paleotectonic Implications. Tectonophysics, 68(1/2): 83–111. https://doi.org/10.1016/0040-1951(80)90009-8CrossRefGoogle Scholar
  15. Donath, F. A., Parker, R. B., 1964. Folds and Folding. Geological Society of America Bulletin, 75(1): 45–62. https://doi.org/10.1130/0016-7606(1964)75[45:faf]2.0.co;2CrossRefGoogle Scholar
  16. Epard, J. L., Groshong, R. H. Jr., 1995. Kinematic Model of Detachment Folding Including Limb Rotation, Fixed Hinges and Layer-Parallel Strain. Tectonophysics, 247(1/2/3/4): 85–103. https://doi.org/10.1016/0040-1951(94)00266-cCrossRefGoogle Scholar
  17. Ernst, W. G., 1988. Tectonic History of Subduction Zones Inferred from Retrograde Blueschist P-T Paths. Geology, 16(12): 1081–1084. https://doi.org/10.1130/0091-7613(1988)016<1081:thoszi>2.3.co;2CrossRefGoogle Scholar
  18. Faghih, A., Kusky, T., Samani, B., 2012. Kinematic Analysis of Deformed Structures in a Tectonic Mélange: A Key Unit for the Manifestation of Transpression along the Zagros Suture Zone, Iran. Geological Magazine, 149(6): 1107–1117. https://doi.org/10.1017/s0016756812000295CrossRefGoogle Scholar
  19. Falcon, N. L., 1969. Problems of the Relationship between Surface Structure and Deep Displacements Illustrated by the Zagros Range. Geological Society, London, Special Publications, 3(1): 9–21. https://doi.org/10.1144/gsl.sp.1969.003.01.02CrossRefGoogle Scholar
  20. Fischer, M. P., Woodward, N. B., Mitchell, M. M., 1992. The Kinematics of Break-Thrust Folds. Journal of Structural Geology, 14(4): 451–460. https://doi.org/10.1016/0191-8141(92)90105-6CrossRefGoogle Scholar
  21. Fisher, D. M., Anastasio, D. J., 1994. Kinematic Analysis of a Large-Scale Leading Edge Fold, Lost River Range, Idaho. Journal of Structural Geology, 16(3): 337–354. https://doi.org/10.1016/0191-8141(94)90039-6CrossRefGoogle Scholar
  22. Fleuty, M. J., 1964. The Description of Folds. Proceedings of the Geologists’ Association, 75(4): 461–492. https://doi.org/10.1016/s0016-7878(64)80032-8CrossRefGoogle Scholar
  23. Goscombe, B. D., Passchier, C. W., 2003. Asymmetric Boudins as Shear Sense Indicators—An Assessment from Field Data. Journal of Structural Geology, 25(4): 575–589. https://doi.org/10.1016/s0191-8141(02)00045-7CrossRefGoogle Scholar
  24. Goscombe, B. D., Passchier, C. W., Hand, M., 2004. Boudinage Classification: End-Member Boudin Types and Modified Boudin Structures. Journal of Structural Geology, 26(4): 739–763. https://doi.org/10.1016/j.jsg.2003.08.015CrossRefGoogle Scholar
  25. Grasemann, B., Wiesmayr, G., Draganits, E., et al., 2004. Classification of Refold Structures. The Journal of Geology, 112(1): 119–125. https://doi.org/10.1086/379696CrossRefGoogle Scholar
  26. Haghipour, A., Aghanabati, A., 1985. Geological Map of Iran, 1: 2 500 000. Geological Survey of Iran, Ministry of Mines and Metals, TehranGoogle Scholar
  27. Hallam, A., 1976. Geology and Plate Tectonics Interpretation of the Sediments of the Mesozoic Radiolarite-Ophiolite Complex in the Neyriz Region, Southern Iran. Geological Society of America Bulletin, 87(1): 47–52. https://doi.org/10.1130/0016-7606(1976)87<47:gaptio>2.0.co;2CrossRefGoogle Scholar
  28. Haynes, S. J., McQuillan, H., 1974. Evolution of the Zagros Suture Zone, Southern Iran. Geological Society of America Bulletin, 85(5): 739–744. https://doi.org/10.1130/0016-7606(1974)85<739:eotzsz>2.0.co;2CrossRefGoogle Scholar
  29. Hessami, K., Jamali, F., Tabassi, H., 2003. Major Active Faults of Iran. IIEES, TehranGoogle Scholar
  30. Hudleston, P. J., 1973. Fold Morphology and some Geometrical Implications of Theories of Fold Development. Tectonophysics, 16(1/2): 1–46. https://doi.org/10.1016/0040-1951(73)90129-7CrossRefGoogle Scholar
  31. Hudleston, P. J., Treagus, S. H., 2010. Information from Folds: A Review. Journal of Structural Geology, 32(12): 2042–2071. https://doi.org/10.1016/j.jsg.2010.08.011CrossRefGoogle Scholar
  32. Kearey, P., Klepeis, K. A., Vine, F. J., 2009. Global Tectonics. John Wiley & Sons Ltd, Oxford. 482Google Scholar
  33. McQuarrie, N., Stock, J. M., Verdel, C., et al., 2003. Cenozoic Evolution of Neotethys and Implications for the Causes of Plate Motions. Geophysical Research Letters, 30(20): 2036. https://doi.org/10.1029/2003gl017992CrossRefGoogle Scholar
  34. Mehrnush, M., Hamdi, B., Brants, A., 1971. Stratigraphy of Jurassic–Early Cretaceous Radiolarite Sequences of Bastarun. Ministry of Mines and Metals, Geological Survey of Iran Internal Report, Tehran. 762(55)Google Scholar
  35. Me Mitra, S., 2002. Fold-Accommodation Faults. American Association of Petroleum Geology Bulletin, 86(4): 671–693Google Scholar
  36. Mitra, S., 2003. A Unified Kinematic Model for the Evolution of Detachment Folds. Journal of Structural Geology, 25(10): 1659–1673. https://doi.org/10.1016/s0191-8141(02)00198-0CrossRefGoogle Scholar
  37. Molnar, P., Tapponnier, P., 1975. Cenozoic Tectonics of Asia: Effects of a Continental Collision: Features of Recent Continental Tectonics in Asia can be Interpreted as Results of the India-Eurasia Collision. Science, 189(4201): 419–426. https://doi.org/10.1126/science.189.4201.419CrossRefGoogle Scholar
  38. Navabpour, P., Angelier, J., Barrier, E., 2007. Cenozoic Post-Collisional Brittle Tectonic History and Stress Reorientation in the High Zagros Belt (Iran, Fars Province). Tectonophysics, 432(1/2/3/4): 101–131. https://doi.org/10.1016/j.tecto.2006.12.007CrossRefGoogle Scholar
  39. Navabpour, P., Angelier, J., Barrier, E., 2010. Mesozoic Extensional Brittle Tectonics of the Arabian Passive Margin, Inverted in the Zagros Collision (Iran, Interior Fars). Geological Society, London, Special Publications, 330(1): 65–96. https://doi.org/10.1144/sp330.5CrossRefGoogle Scholar
  40. Piryaei, A., Reijmer, J. J. G., van Buchem, F. S. P., et al., 2010. The Influence of Late Cretaceous Tectonic Processes on Sedimentation Patterns along the Northeastern Arabian Plate Margin (Fars Province, SW Iran). Geological Society, London, Special Publications, 330(1): 211–251. https://doi.org/10.1144/sp330.11CrossRefGoogle Scholar
  41. Price, N. J., Cosgrove, J. W., 1990. Analysis of Geological Structures. Cambridge University Press, Cambridge. 502Google Scholar
  42. Ramberg, H., 1964. Selective Buckling of Composite Layers with Contrasted Rheological Properties, a Theory for Simultaneous Formation of Several Orders of Folds. Tectonophysics, 1(4): 307–341. https://doi.org/10.1016/0040-1951(64)90020-4CrossRefGoogle Scholar
  43. Ramsay, J. G., Huber, M. I., 1987. Techniques of Modern Structural Geology, Folds and Fractures, Vol. 2. Academic Press, London. 309–699Google Scholar
  44. Reches, Z., Eidelman, A., 1995. Drag along Faults. Tectonophysics, 247(1/2/3/4): 145–156. https://doi.org/10.1016/0040-1951(94)00170-eCrossRefGoogle Scholar
  45. Ricou, L.-E., 1971. Le Croissant Ophiolitique Péri-Arabe: Une Ceinture de Nappes Mises en Place au Crétacé Supérieur. Rev. Geogr. Phys. Geol. Dyn., 13: 327–350Google Scholar
  46. Sarkarinejad, K., 1999. Tectonic Finite Strain Analysis Using: Ghouri Deformed Conglomerate, Neyriz Area, Southwestern Iran. Iranian Journal of Science and Technology, 23: 352–363Google Scholar
  47. Sarkarinejad, K., 2005. Structures and Microstructures Related to Steady-State Mantle Flow in the Neyriz Ophiolite, Iran. Journal of Asian Earth Sciences, 25(6): 859–881. https://doi.org/10.1016/j.jseaes.2004.08.007CrossRefGoogle Scholar
  48. Sarkarinejad, K., Azizi, A., 2008. Slip Partitioning and Inclined Dextral Transpression along the Zagros Thrust System, Iran. Journal of Structural Geology, 30(1): 116–136. https://doi.org/10.1016/j.jsg.2007.10.001CrossRefGoogle Scholar
  49. Sarkarinejad, K., Godin, L., Faghih, A., 2009. Kinematic Vorticity Flow Analysis and 40Ar/39Ar Geochronology Related to Inclined Extrusion of the HP-LT Metamorphic Rocks along the Zagros Accretionary Prism, Iran. Journal of Structural Geology, 31(7): 691–706. https://doi.org/10.1016/j.jsg.2009.04.003CrossRefGoogle Scholar
  50. Sarkarinejad, K., Samani, B., Faghih, A., et al., 2010. Implications of Strain and Vorticity of Flow Analyses to Interpret the Kinematics of an Oblique Convergence Event (Zagros Mountains, Iran). Journal of Asian Earth Sciences, 38(1/2): 34–43. https://doi.org/10.1016/j.jseaes.2009.12.015CrossRefGoogle Scholar
  51. Seyrafian, A., 1998. Petrofacies Analysis and Depositional Environment of the Jahrum Formation (Eocene), South-Southwest of Burujen, Iran. Carbonates and Evaporites, 13(1): 90–99. https://doi.org/10.1007/bf03175438CrossRefGoogle Scholar
  52. Stewart, S. A., 1993. Fold Interference Structures in Thrust Systems. Tectonophysics, 225(4): 449–456. https://doi.org/10.1016/0040-1951(93)90309-8CrossRefGoogle Scholar
  53. Stöcklin, J., 1968. Structural History and Tectonics of Iran. American Association of Petroleum Geologists Bulletin, 52: 1229–1258Google Scholar
  54. Stoneley, R., 1981. The Geology of the Kuh-E Dalneshin Area of Southern Iran, and its Bearing on the Evolution of Southern Tethys. Journal of the Geological Society, 138(5): 509–526. https://doi.org/10.1144/gsjgs.138.5.0509CrossRefGoogle Scholar
  55. Storti, F., Salvini, F., McClay, K., 1997. Fault-Related Folding in Sandbox Analogue Models of Thrust Wedges. Journal of Structural Geology, 19(3/4): 583–602. https://doi.org/10.1016/s0191-8141(97)83029-5CrossRefGoogle Scholar
  56. Tahmasbi, Z., Maghfouri-Moghadam, I., Zarei-Sahamieh, R., et al., 2009. Microbiostratigraphy of the Tarbur Formation, Zagros Basin, Iran. Journal of Applied Sciences, 9(9): 1781–1785. https://doi.org/10.3923/jas.2009.1781.1785CrossRefGoogle Scholar
  57. Thiessen, R. L., Means, W. D., 1980. Classification of Fold Interference Patterns: A Reexamination. Journal of Structural Geology, 2(3): 311–316. https://doi.org/10.1016/0191-8141(80)90019-xCrossRefGoogle Scholar
  58. Twiss, R. J., 1988. Description and Classification of Folds in Single Surfaces. Journal of Structural Geology, 10(6): 607–623. https://doi.org/10.1016/0191-8141(88)90027-2CrossRefGoogle Scholar
  59. Twiss, R. J., Moores, E. M., 1992. Structural Geology. Freeman and Co., New York. 532Google Scholar
  60. Vaziri-Moghaddam, H., Safari, A., Taheri, A., 2005. Microfacies, Paleoenvironments and Sequence Stratigraphy of the Tarbur Formation in Kherameh Area, SW Iran. Carbonates and Evaporites, 20(2): 131–137. https://doi.org/10.1007/bf03175456CrossRefGoogle Scholar
  61. Weijermars, R., 1991. The Role of Stress in Ductile Deformation. Journal of Structural Geology, 13(9): 1061–1078. https://doi.org/10.1016/0191-8141(91)90057-pCrossRefGoogle Scholar
  62. Wiesmayr, G., Grasemann, B., 2005. Sense and Non-Sense of Shear in Flanking Structures with Layer-Parallel Shortening: Implications for Fault-Related Folds. Journal of Structural Geology, 27(2): 249–264. https://doi.org/10.1016/j.jsg.2004.09.001CrossRefGoogle Scholar
  63. Wrede, V., 2005. Thrusting in a Folded Regime: Fold Accommodation Faults in the Ruhr Basin, Germany. Journal of Structural Geology, 27(5): 789–803. https://doi.org/10.1016/j.jsg.2005.01.008CrossRefGoogle Scholar
  64. Zhang, Z. Y., Xiao, W. J., Majidifard, M. R., et al., 2016. Detrital Zircon Provenance Analysis in the Zagros Orogen, SW Iran: Implications for the Amalgamation History of the Neo-Tethys. International Journal of Earth Sciences, 106(4): 1223–1238. https://doi.org/10.13039/501100002367CrossRefGoogle Scholar

Copyright information

© China University of Geosciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Geology, College of ScienceUniversity of Sistan and BaluchestanZahedanIran
  2. 2.Department of Earth Sciences, College of SciencesShiraz UniversityShirazIran

Personalised recommendations