Skip to main content
Log in

How Properties that Distinguish Solids from Fluids and Constraints of Spherical Geometry Suppress Lower Mantle Convection

  • Invited Article
  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

The large magnitude of the dimensionless Rayleigh number (Ra ∼108) for Earth’s ∼3 000 km thick mantle is considered evidence of whole mantle convection. However, the current formulation assumes behavior characteristic of gases and liquids and also assumes Cartesian geometry. Issues arising from neglecting physical properties unique to solids and ignoring the spherical shapes for planets include: (1) Planet radius must be incorporated into Ra, in addition to layer thickness, to conserve mass during radial displacements. (2) The vastly different rates for heat and mass diffusion in solids, which result from their decoupled transport mechanisms, promote stability. (3) Unlike liquids, substantial stress is needed to deform solids, which independently promotes stability. (4) High interior compression stabilizes the mantle in additional minor ways. Therefore, representing conditions for convection in solid, self-gravitating spheroids, requires modifying formulae developed for bottomheated fluids near ambient conditions under an invariant gravitational field. To derive stability criteria appropriate to solid spheres, we use dimensional analysis, and consider the effects of geometry, force competition, and microscopic behavior. We show that internal heating has been improperly accounted for in the Ra. We conclude that the lower mantle is stable for two independent reasons: heat diffusion far outpaces mass diffusion (creep) and yield strength of solids at high pressure exceeds the effective deviatoric stress. We discuss the role of partial melt in lubricating plate motion, and explain why the Ra is not applicable to the multi-component upper mantle. When conduction is insufficient to transport heat in the Earth, melt production and ascent are expected, not convection of solid rock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References Cited

  • Agee, C. B., 1998. Phase Transformations and Seismic Structure in the Upper Mantle and Transition Zone. Reviews in Mineralogy, 37: 165–204

    Google Scholar 

  • Anderson, D. L., 1989. Theory of the Earth. Blackwell Scientific, Boston

    Google Scholar 

  • Armienti, P., Gasperini, D., 2010. Isotopic Evidence for Chaotic Imprint in Upper Mantle Heterogeneity. Geochemistry, Geophysics, Geosystems, 11(5): Q0AC02. https://doi.org/10.1029/2009gc002798

    Google Scholar 

  • Aurnou, J. M., Olson, P. L., 2001. Experiments on Rayleigh–Bénard Convection, Magnetoconvection and Rotating Magnetoconvection in Liquid Gallium. Journal of Fluid Mechanics, 430: 283–307. https://doi.org/10.1017/s0022112000002950

    Article  Google Scholar 

  • Bercovici, D., 2015. Mantle Dynamics: An Introduction and Overview. In: Schubert, G., ed., Treatise on Geophysics, 7: 1–22

    Google Scholar 

  • Birch, J. M., Wilshire, B., 1974. Transient and Steady State Creep Behaviour of Polycrystalline MgO. Journal of Materials Science, 9(6): 871–875. https://doi.org/10.1007/bf00570377

    Article  Google Scholar 

  • Blagoveshchenskii, N., Novikov, A., Puchkov, A., et al., 2015. Self-Diffusion in Liquid Gallium and Hard Sphere Model. EPJ Web of Conferences, 83: 02018. https://doi.org/10.1051/epjconf/20158302018

    Article  Google Scholar 

  • Bleazard, J. G., Sun, T. F., Teja, A. S., 1996. The Thermal Conductivity and Viscosity of Acetic Acid-Water Mixtures. International Journal of Thermophysics, 17(1): 111–125. https://doi.org/10.1007/bf01448214

    Article  Google Scholar 

  • Boresi, A. P., Schmidt, R. J., 2003. Advanced Mechanics of Materials. John Wiley and Sons, Hoboken, NJ

    Google Scholar 

  • Bridgeman, P., 1927. Dimensional Analysis. Yale University Press, New Haven

    Google Scholar 

  • Brillo, J., Pommrich, A. I., Meyer, A., 2011. Relation between Self-Diffusion and Viscosity in Dense Liquids: New Experimental Results from Electrostatic Levitation. Physical Review Letters, 107(16): 165902. https://doi.org/10.1103/physrevlett.107.165902

    Article  Google Scholar 

  • Buckingham, E., 1914. On Physically Similar Systems; Illustrations of the Use of Dimensional Equations. Physical Review, 4(4): 345–376. https://doi.org/10.1103/physrev.4.345

    Article  Google Scholar 

  • Bürgmann, R., Dresen, G., 2008. Rheology of the Lower Crust and Upper Mantle: Evidence from Rock Mechanics, Geodesy, and Field Observations. Annual Review of Earth and Planetary Sciences, 36(1): 531–567. https://doi.org/10.1146/annurev.earth.36.031207.124326

    Article  Google Scholar 

  • Carslaw, H. S., Jaeger, J. C., 1959. Conduction of Heat in Solids, 2nd Edition. Oxford University Press, New York

    Google Scholar 

  • Chakraborty, S., 2010. Diffusion Coefficients in Olivine, Wadsleyite and Ringwoodite. Reviews in Mineralogy and Geochemistry, 72(1): 603–639. https://doi.org/10.2138/rmg.2010.72.13

    Article  Google Scholar 

  • Chudinovskikh, L., Boehler, R., 2007. Eutectic Melting in the System Fe-S to 44 GPa. Earth and Planetary Science Letters, 257(1/2): 97–103. https://doi.org/10.1016/j.epsl.2007.02.024

    Article  Google Scholar 

  • Costin, L. S., 1985. Damage Mechanics in the Post-Failure Regime. Mechanics of Materials, 4(2): 149–160. https://doi.org/10.1016/0167-6636(85)90013-4

    Article  Google Scholar 

  • Coupland, J. N., McClements, D. J., 1997. Physical Properties of Liquid Edible Oils. Journal of the American Oil Chemists’ Society, 74(12): 1559–1564. https://doi.org/10.1007/s11746-997-0077-1

    Article  Google Scholar 

  • Criss, E. M., Smith, R. J., Meyers, M. A., 2015. Failure Mechanisms in Cobalt Welded with a Silver-Copper Filler. Materials Science and Engineering: A, 645: 369–382. https://doi.org/10.1016/j.msea.2015.07.094

    Article  Google Scholar 

  • Criss, R. E., Hofmeister, A. M., 2016. Conductive Cooling of Spherical Bodies with Emphasis on the Earth. Terra Nova, 28(2): 101–109. https://doi.org/10.13039/100000001

    Article  Google Scholar 

  • Cussler, E. L., 2008. Diffusion: Mass Transport in Fluid Systems. Cambridge University Press, Cambridge

    Google Scholar 

  • Davies, G. F., 2011. Mantle Convection for Geologists. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Davis, R. O., Selvadurai, A. P. S., 2005. Plasticity and Geomechanics. Cambridge University Press, Cambridge de Freitas

    Google Scholar 

  • Cabral, A. J., de Oliveira, P. C., Moreira, S. G. C., et al., 2011. Thermal Diffusivity of Palm Olein and Compounds Containing Β-Carotene. International Journal of Thermophysics, 32(9): 1966–1972. https://doi.org/10.1007/s10765-011-1059-y

    Article  Google Scholar 

  • Diamante, L. M., Lan, T. Y., 2014. Absolute Viscosities of Vegetable Oils at Different Temperatures and Shear Rate Range of 64.5 to 4 835 s-1. Journal of Food Processing, 2014(3): 1–6. https://doi.org/10.1155/2014/234583

    Article  Google Scholar 

  • Doglioni, C., Anderson, D. L., 2015. Top Driven Asymmetric Mantle Convection. In: Foulger, G. R., Lustrino, M., King, S. D., eds., The Interdisciplinary Earth: In Honor of Don L. Anderson. GSA Special Papers, 214: 51–64

    Google Scholar 

  • Doglioni, C., Panza, G., 2015. Polarized Plate Tectonics. Advances in Geophysics, 56: 1–167

    Article  Google Scholar 

  • Domínguez-Rodríguez, A., Gómez-García, D., Zapata-Solvas, E., et al., 2007. Making Ceramics Ductile at Low Homologous Temperatures. Scripta Materialia, 56(2): 89–91. https://doi.org/10.1016/j.scriptamat.2006.09.024

    Article  Google Scholar 

  • Doremus, R. H., 2002. Viscosity of Silica. Journal of Applied Physics, 92(12): 7619–7629. https://doi.org/10.1063/1.1515132

    Article  Google Scholar 

  • Du, Z., Vinnik, L. P., Foulger, G. R., 2006. Evidence from P-to-S Mantle Converted Waves for a Flat “660-km” Discontinuity beneath Iceland. Earth and Planetary Science Letters, 241(1/2): 271–280. https://doi.org/10.1016/j.epsl.2005.09.066

    Article  Google Scholar 

  • Dziewonski, A. M., Anderson, D. L., 1981. Preliminary Reference Earth Model. Physics of the Earth and Planetary Interiors, 25(4): 297–356. https://doi.org/10.1016/0031-9201(81)90046-7

    Article  Google Scholar 

  • Elder, J., 1976. The Bowels of the Earth. Oxford University Press, Oxford. ISBN 0-19-854413-8

    Google Scholar 

  • Ertl, H., Dullien, F. A. L., 1973. Self-Diffusion and Viscosity of some Liquids as a Function of Temperature. AIChE Journal, 19(6): 1215–1223. https://doi.org/10.1002/aic.690190619

    Article  Google Scholar 

  • Fegley, B. Jr., 2015. Practical Chemical Thermodynamics for Geoscientists. Academic Press/Elsevier, Waltham, Massachusetts

    Google Scholar 

  • Fichtner, A., Villaseñor, A., 2015. Crust and Upper Mantle of the Western Mediterranean— Constraints from Full-Waveform Inversion. Earth and Planetary Science Letters, 428: 52–62. https://doi.org/10.1016/j.epsl.2015.07.038

    Article  Google Scholar 

  • Foulger, G. R., 2010. Plates vs Plumes: A Geological Controversy. Wiley-Blackwell, ISBN 978-1-4443-3679-5. 328

    Book  Google Scholar 

  • Foulger, G. R., Panza, G. F., Artemieva, I. M., et al., 2013. Caveats on Tomographic Images. Terra Nova, 25: 259–281

    Article  Google Scholar 

  • Foulger, G. R., Pritchard, M. J., Julian, B. R., et al., 2001. Seismic Tomography Shows that Upwelling beneath Iceland is Confined to the Upper Mantle. Geophysical Journal International, 146(2): 504–530. https://doi.org/10.1046/j.0956-540x.2001.01470.x

    Article  Google Scholar 

  • French, S. W., Romanowicz, B., 2015. Broad Plumes Rooted at the Base of the Earth’s Mantle beneath Major Hotspots. Nature, 525(7567): 95–99. https://doi.org/10.1038/nature14876

    Article  Google Scholar 

  • Frenkel, J., 1926. Zur Theorie Der Elastizitätsgrenze Und Der Festigkeit Kristallinischer Körper. Zeitschrift für Physik, 37(7/8): 572–609. https://doi.org/10.1007/bf01397292

    Article  Google Scholar 

  • Gando, A., Gando, Y., Ichimura, K., et al., 2011. Partial Radiogenic Heat Model for Earth Revealed by Geoneutrino Measurements. Nature Geoscience, 4(9): 647–651. https://doi.org/10.1038/ngeo1205

    Article  Google Scholar 

  • Gao, S. S., Liu, K. H., 2014. Imaging Mantle Discontinuities Using Multiply-Reflected P-to-S Conversions. Earth and Planetary Science Letters, 402: 99–106. https://doi.org/10.13039/501100004342

    Article  Google Scholar 

  • Gasparik, T., 2000. Evidence for the Transition Zone Origin of some [Mg, Fe]O Inclusions in Diamonds. Earth and Planetary Science Letters, 183(1/2): 1–5. https://doi.org/10.1016/s0012-821x(00)00254-5

    Article  Google Scholar 

  • Glazier, J. A., Segawa, T., Naert, A., et al., 1999. Evidence against ‘Ultrahard’ Thermal Turbulence at very High Rayleigh Numbers. Nature, 398(6725): 307–310. https://doi.org/10.1038/18626

    Article  Google Scholar 

  • Goes, S., Agrusta, R., van Hunen, J., et al., 2017. Subduction-Transition Zone Interaction: A Review. Geosphere, 13(3): 644–664. https://doi.org/10.1130/ges01476.1

    Article  Google Scholar 

  • Hamilton, W. B., 2002. The Closed Upper-Mantle Circulation of Plate Tectonics. In: Stein S., Freymueller, J. T., eds., Plate Boundary Zones: Geodynamics Series. American Geophysical Union, Washington, D.C.. 359–410

  • Hamilton, W. B., 2011. Plate Tectonics Began in Neoproterozoic Time, and Plumes from Deep Mantle have never Operated. Lithos, 123(1/2/3/4): 1–20. https://doi.org/10.1016/j.lithos.2010.12.007

    Article  Google Scholar 

  • Hamilton, W. B., 2015. Terrestrial Planets Fractionated Synchronously with Accretion, but Earth Progressed through Subsequent Internally Dynamic Stages whereas Venus and Mars have been Inert for more than 4 Billion Years. GSA Special Papers, 514: 123–156

    Google Scholar 

  • Hamza, V. M., 2013. Global Heat Flow without Invoking “Kelvin Paradox”. Frontiers in Geosciences, 1: 11–20

    Google Scholar 

  • He, X. M., Fowler, A., Toner, M., 2006. Water Activity and Mobility in Solutions of Glycerol and Small Molecular Weight Sugars: Implication for Cryo-and Lyopreservation. Journal of Applied Physics, 100(7): 074702. https://doi.org/10.1063/1.2336304

    Article  Google Scholar 

  • Heap, M. J., Baud, P., Meredith, P. G., et al., 2011. Brittle Creep in Basalt and Its Application to Time-Dependent Volcano Deformation. Earth and Planetary Science Letters, 307(1/2): 71–82. https://doi.org/10.1016/j.epsl.2011.04.035

    Article  Google Scholar 

  • Heep, M. J., 2009. Creep: Time-Dependent Brittle Deformation in Rocks: [Dissertation]. University College London, London

    Google Scholar 

  • Henderson, G., 1982. Inorganic Geochemistry. Permagon Press, New York. ISBN 0-08-020448-1

    Google Scholar 

  • Hetényi, G., 2014. To Conserve or not to Conserve (Mass in Numerical Models). Terra Nova, 26(5): 372–376. https://doi.org/10.1111/ter.12109

    Article  Google Scholar 

  • Hill, R., 1950. The Mathematical Theory of Plasticity. Oxford University Press, Oxford

    Google Scholar 

  • Hiraga, T., Miyazaki, T., Tasaka, M., et al., 2010. Mantle Superplasticity and Its Self-Made Demise. Nature, 468(7327): 1091–1094. https://doi.org/10.1038/nature09685

    Article  Google Scholar 

  • Hirth, G., 2002. Laboratory Constraints on the Rheology of the Upper Mantle. Reviews in Mineralogy and Geochemistry, 51(1): 97–120. https://doi.org/10.2138/gsrmg.51.1.97

    Article  Google Scholar 

  • Hofmeister, A. M., 2010. Scale Aspects of Heat Transport in the Diamond Anvil Cell, in Spectroscopic Modeling, and in Earth’s Mantle: Implications for Secular Cooling. Physics of the Earth and Planetary Interiors, 180(3/4): 138–147. https://doi.org/10.1016/j.pepi.2009.12.006

    Article  Google Scholar 

  • Hofmeister, A. M., Branlund, J. M., 2016. Thermal Conductivity of the Earth. In: Schubert, G., ed., Treatise in Geophysics, 2nd Edition. V. 2 Mineral Physics (Price, G. D., ed.). Elsevier, The Netherlands. 584–608

  • Hofmeister, A. M., Criss, R. E., 2005. Earth’s Heat Flux Revised and Linked to Chemistry. Tectonophysics, 395(3/4): 159–177. https://doi.org/10.1016/j.tecto.2004.09.006

    Article  Google Scholar 

  • Hofmeister, A. M., Criss, R. E., 2012. A Thermodynamic and Mechanical Model for Formation of the Solar System via 3-Dimensional Collapse of the Dusty Pre-Solar Nebula. Planetary and Space Science, 62(1): 111–131. https://doi.org/10.13039/100000104

    Article  Google Scholar 

  • Hofmeister, A. M., Criss, R. E., 2013. How Irreversible Heat Transport Processes Drive Earth’s Interdependent Thermal, Structural, and Chemical Evolution. Gondwana Research, 24(2): 490–500. https://doi.org/10.1016/j.gr.2013.02.009

    Article  Google Scholar 

  • Hofmeister, A. M., Criss, R. E., 2015. Evaluation of the Heat, Entropy, and Rotational Changes Produced by Gravitational Segregation during Core Formation. Journal of Earth Science, 26(1): 124–133. https://doi.org/10.1007/s12583-015-0509-z

    Article  Google Scholar 

  • Hofmeister, A. M., Sehlke, A., Avard, G., et al., 2016. Transport Properties of Glassy and Molten Lavas as a Function of Temperature and Composition. Journal of Volcanology and Geothermal Research, 327: 330–348. https://doi.org/10.13039/100000001

    Article  Google Scholar 

  • Hofmeister, A. M., Whittington, A. G., 2012. Effects of Hydration, Annealing, and Melting on Heat Transport Properties of Fused Quartz and Fused Silica from Laser-Flash Analysis. Journal of Non-Crystalline Solids, 358(8): 1072–1082. https://doi.org/10.1016/j.jnoncrysol.2012.02.012

    Article  Google Scholar 

  • Huang, L. H., Liu, L. S., 2009. Simultaneous Determination of Thermal Conductivity and Thermal Diffusivity of Food and Agricultural Materials Using a Transient Plane-Source Method. Journal of Food Engineering, 95(1): 179–185. https://doi.org/10.1016/j.jfoodeng.2009.04.024

    Article  Google Scholar 

  • Jin, Z. M., Zhang, J. F., Green, H. W. II, et al., 2001. Eclogite Rheology: Implications for Subducted Lithosphere. Geology, 29(8): 667–670. https://doi.org/10.1130/0091-7613(2001)029<0667:erifsl>2.0.co;2

    Article  Google Scholar 

  • Kajihara, K., Kamioka, H., Hirano, M., et al., 2005. Interstitial Oxygen Molecules in Amorphous SiO2. III. Measurements of Dissolution Kinetics, Diffusion Coefficient, and Solubility by Infrared Photoluminescence. Journal of Applied Physics, 98(1): 013529. https://doi.org/10.1063/1.1943506

    Google Scholar 

  • Kavner, A., Duffy, T. S., 2001. Strength and Elasticity of Ringwoodite at Upper Mantle Pressures. Geophysical Research Letters, 28(14): 2691–2694. https://doi.org/10.1029/2000gl012671

    Article  Google Scholar 

  • Kestin, J., Knierim, K., Mason, E. A., et al., 1984. Equilibrium and Transport Properties of the Noble Gases and Their Mixtures at Low Density. Journal of Physical and Chemical Reference Data, 13(1): 229–303. https://doi.org/10.1063/1.555703

    Article  Google Scholar 

  • Kohlstedt, D. L., Hansen, L. N., 2015. Constituative Behavior, Rheological Behavior, and Viscosity of Rocks. In: Schubert, G., ed., Treatise in Geophysics, 2nd Edition, Vol. 2. Elsevier, The Netherlands. 389–427

  • Koschmieder, E. L., Pallas, S. G., 1974. Heat Transfer through a Shallow, Horizontal Convecting Fluid Layer. International Journal of Heat and Mass Transfer, 17(9): 991–1002. https://doi.org/10.1016/0017-9310(74)90181-1

    Article  Google Scholar 

  • Langdon, T. G., 1982. Fracture Processes in Superplastic Flow. Metal Science, 16(4): 175–183. https://doi.org/10.1179/030634582790427208

    Article  Google Scholar 

  • Lodders, K., 2000. An Oxygen Isotope Mixing Model for the Accretion and Composition of Rocky Planets. Space Science Review, 92: 341–354

    Article  Google Scholar 

  • Luca, J., Mrawira, D., 2005. New Measurement of Thermal Properties of Superpave Asphalt Concrete. Journal of Materials in Civil Engineering, 17(1): 72–79. https://doi.org/10.1061/(asce)0899-1561(2005)17:1(72)

    Article  Google Scholar 

  • Meyer, R. E., 1961. Self-Diffusion of Liquid Mercury. The Journal of Physical Chemistry, 65(3): 567–568. https://doi.org/10.1021/j100821a507

    Article  Google Scholar 

  • Meyers, M. A., Chawla, K. K., 2009. Mechanical Behavior of Materials. Cambridge University Press, Cambridge

    Google Scholar 

  • Mitchell, B. S., 2004. An Introduction to Materials Engineering and Science for Chemical and Materials Engineers. John Wiley and Sons, Inc., Hoboken

    Google Scholar 

  • Moghadam, R. H., Trepmann, C. A., Stöckhert, B., et al., 2010. Rheology of Synthetic Omphacite Aggregates at High Pressure and High Temperature. Journal of Petrology, 51(4): 921–945. https://doi.org/10.1093/petrology/egq006

    Article  Google Scholar 

  • Mukherjee, A. K., Bird, J. E., Dorn, J. E., 1969. Experimental Correlation for High-Temperature Creep. Transactions of the American Society of Metals, 62: 155–179

    Google Scholar 

  • Nabelek, P. I., Hofmeister, A. M., Whittington, A. G., 2012. The Influence of Temperature-Dependent Thermal Diffusivity on the Conductive Cooling Rates of Plutons and Temperature-Time Paths in Contact Aureoles. Earth and Planetary Science Letters, 317/318: 157–164

    Article  Google Scholar 

  • Nguyen, L. T., Balasubramaniam, V. M., Sastry, S. K., 2012. Determination of In-Situ Thermal Conductivity, Thermal Diffusivity, Volumetric Specific Heat and Isobaric Specific Heat of Selected Foods under Pressure. International Journal of Food Properties, 15(1): 169–187. https://doi.org/10.1080/10942911003754726

    Article  Google Scholar 

  • Nishi, T., Shibata, H., Waseda, Y., et al., 2003. Thermal Conductivities of Molten Iron, Cobalt, and Nickel by Laser Flash Method. Metallurgical and Materials Transactions A, 34(12): 2801–2807. https://doi.org/10.1007/s11661-003-0181-2

    Article  Google Scholar 

  • Nishihara, Y., Tinker, D., Kawazoe, T., et al., 2008. Plastic Deformation of Wadsleyite and Olivine at High-Pressure and High-Temperature Using a Rotational Drickamer Apparatus (RDA). Physics of the Earth and Planetary Interiors, 170(3/4): 156–169. https://doi.org/10.1016/j.pepi.2008.03.003

    Article  Google Scholar 

  • Paterson, M. S., 1958. Experimental Deformation and Faulting in Wombeyan Marble. Geological Society of America Bulletin, 69(4): 465–475. https://doi.org/10.1130/0016-7606(1958)69[465:edafiw]2.0.co;2

    Article  Google Scholar 

  • Paterson, M. S., Weaver, C. W., 1970. Deformation of Polycrystalline MgO under Pressure. Journal of the American Ceramic Society, 53(8): 463–471. https://doi.org/10.1111/j.1151-2916.1970.tb12678.x

    Article  Google Scholar 

  • Pearson, D. S., Ver Strate, G., Von Meerwall, E., et al., 1987. Viscosity and Self-Diffusion Coefficient of Linear Polyethylene. Macromolecules, 20(5): 1133–1141. https://doi.org/10.1021/ma00171a044

    Article  Google Scholar 

  • Prewitt, C. T., Downs, R. T., 1998. High-Pressure Crystal Chemistry. Reviews in Mineralogy, 37: 284–342

    Google Scholar 

  • Rayleigh, L., 1916. On Convection Currents in a Horizontal Layer of Fluid, when the Higher Temperature is on the under Side. Philosophical Magazine Series 6, 32(192): 529–546. https://doi.org/10.1080/14786441608635602

    Article  Google Scholar 

  • Rees, B. A., Okal, E. A., 1987. The Depth of the Deepest Historical Earthquakes. Pure and Applied Geophysics, 125(5): 699–715. https://doi.org/10.1007/bf00878029

    Article  Google Scholar 

  • Reif, F., 1965. Fundamentals of Statistical and Thermal Physics. McGraw-Hill Book Company, St. Louis. 651

    Google Scholar 

  • Romine, W. L., Whittington, A. G., 2015. A Simple Model for the Viscosity of Rhyolites as a Function of Temperature, Pressure and Water Content. Geochimica et Cosmochimica Acta, 170: 281–300. https://doi.org/10.1016/j.gca.2015.08.009

    Article  Google Scholar 

  • Romine, W. L., Whittington, A. G., Nabelek, P. I., et al., 2012. Thermal Diffusivity of Rhyolitic Glasses and Melts: Effects of Temperature, Crystals and Dissolved Water. Bulletin of Volcanology, 74(10): 2273–2287. https://doi.org/10.1007/s00445-012-0661-6

    Article  Google Scholar 

  • Schriempf, J. T., 1972. A Laser Flash Technique for Determining Thermal Diffusivity of Liquid Metals at Elevated Temperatures. Review of Scientific Instruments, 43(5): 781–786. https://doi.org/10.1063/1.1685757

    Article  Google Scholar 

  • Schriempf, J. T., 1973. Thermal Diffusivity of Liquid Gallium. Solid State Communications, 13(6): 651–653. https://doi.org/10.1016/0038-1098(73)90451-1

    Article  Google Scholar 

  • Schubert, G., Turcotte, D. L., Olson, P., 2001. Mantle Convection in the Earth and Planets. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Sehlke, A., Whittington, A., Robert, B., et al., 2014. Pahoehoe to ‘a’a Transition of Hawaiian Lavas: An Experimental Study. Bulletin of Volcanology, 76(11): 876–896. https://doi.org/10.1007/s00445-014-0876-9

    Article  Google Scholar 

  • Shimada, M., Cho, A., Yukutake, H., 1983. Fracture Strength of Dry Silicate Rocks at High Confining Pressures and Activity of Acoustic Emission. Tectonophysics, 96(1/2): 159–172. https://doi.org/10.1016/0040-1951(83)90248-2

    Article  Google Scholar 

  • Siggia, E. D., 1994. High Rayleigh Number Convection. Annual Review of Fluid Mechanics, 26(1): 137–168. https://doi.org/10.1146/annurev.fl.26.010194.001033

    Article  Google Scholar 

  • Smith, E. M., Shirey, S. B., Nestola, F., et al., 2016. Large Gem Diamonds from Metallic Liquid in Earth’s Deep Mantle. Science, 354(6318): 1403–1405. https://doi.org/10.13039/100000001

    Article  Google Scholar 

  • Soutas-Little, R., 2011. History of Continuum Mechanics. In: Meridio, J., Saccomandi, G., eds., Continuum Mechanics. Eolss Publishers, Singapore. 80–93

  • Stacey, F. D., Stacey, C. H. B., 1999. Gravitational Energy of Core Evolution: Implications for Thermal History and Geodynamo Power. Physics of the Earth and Planetary Interiors, 110(1/2): 83–93. https://doi.org/10.1016/s0031-9201(98)00141-1

    Article  Google Scholar 

  • Stein, C. A., Stein, S. A., 1992. A Model for the Global Variation in Oceanic Depth and Heat Flow with Lithospheric Age. Nature, 359(6391): 123–129. https://doi.org/10.1038/359123a0

    Article  Google Scholar 

  • Stengel, K. C., Oliver, D. S., Booker, J. R., 1982. Onset of Convection in a Variable-Viscosity Fluid. Journal of Fluid Mechanics, 120: 411–431. https://doi.org/10.1017/s0022112082002821

    Article  Google Scholar 

  • Thern, A., Lüdemann, H. D., 1996. P, T Dependence of the Self Diffusion Coefficients and Densities in Liquid Silicone Oils. Zeitschrift für Naturforschung A, 51(3): 192–196. https://doi.org/10.1515/zna-1996-0310

    Article  Google Scholar 

  • Timoshenko, S. P., Goodier, J. N., 1970. Theory of Elasticity. McGraw-Hill, New York

    Google Scholar 

  • Transtrum, M. K., Machta, B. B., Brown, K. S., et al., 2015. Perspective: Sloppiness and Emergent Theories in Physics, Biology, and beyond. The Journal of Chemical Physics, 143(1): 010901. https://doi.org/10.13039/100000001

    Article  Google Scholar 

  • Tritton, D. J., 1977. Physical Fluid Dynamics. Van Nostrand Reinhold, New York

    Book  Google Scholar 

  • Van Schmus, W. R., 1995. Natural Radioactivity of the Crust and Mantle. In: Ahrens, T. J., ed., Global Earth Physics. American Geophysical Union, Washington D.C. 283–291

  • Wawersik, W. R., Brace, W. F., 1970. Post-Failure Behavior of a Granite and Diabase. Rock Mechanics and Rock Engineering, 3: 61–85

    Article  Google Scholar 

  • Weidner, D. J., Li, L., 2015. Methods for the Study of High P/T Deformation and Rheology. In: Schubert, G., ed., Treatise on Geophysics, 2: 339–358

    Article  Google Scholar 

  • White, D. B., 1988. The Planforms and Onset of Convection with a Temperature-Dependent Viscosity. Journal of Fluid Mechanics, 191: 247–286. https://doi.org/10.1017/s0022112088001582

    Article  Google Scholar 

  • Whittington, A. G., Hofmeister, A. M., Nabelek, P. I., 2009. Temperature-Dependent Thermal Diffusivity of Earth’s Crust: Implications for Crustal Anatexis. Nature, 458: 319–321

    Article  Google Scholar 

  • Xu, Z., Morris, R., Bencsik, M., et al., 2014. Detection of Virgin Olive Oil Adulteration Using Low Field Unilateral NMR. Sensors, 14(2): 2028–2035. https://doi.org/10.3390/s140202028

    Article  Google Scholar 

  • Yáñez-Limón, J. M., Mayen-Mondragón, R., Martínez-Flores, O., et al., 2005. Thermal Diffusivity Studies in Edible Commercial Oils Using Thermal Lens Spectroscopy. Superficies y Vacio, 18: 31–37

    Google Scholar 

  • Zemansky, M. W., Dittman, R. H., 1981. Heat and Thermodynamics, 6th Edition. McGraw-Hill, New York

    Google Scholar 

  • Zener, C., 1938. Internal Friction in Solids II. General Theory of Thermoelastic Internal Friction. Physical Review, 53(1): 90–99. https://doi.org/10.1103/physrev.53.90

    Article  Google Scholar 

  • Zhang, Y., Ni, H., Chen, Y., 2010. Diffusion of H, C, and O Components in Silicate Melts. Reviews in Mineralogy and Geochemistry, 72(1): 171–225. https://doi.org/10.2138/rmg.2010.72.5

    Article  Google Scholar 

  • Zhong, S. J., Yuen, D. A., Moresi, L. M, et al., 2015. Numerical Method for Mantle Convection. In: Schubert, G., ed., Treatise on Geophysics. Mantle Dynamics, 7: 197–222

    Google Scholar 

  • Zombeck, M. V., 2007. Handbook of Space Astronomy and Astrophysics. Cambridge University Press, Cambridge

    Google Scholar 

Download references

Acknowledgments

Support for AMH was provided by NSF (No. EAR- 1524495). The authors declare that no conflict of interest exists. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. E. M. Criss is an employee of Panasonic Avionics Corporation, but prepared this article independent of his employment and without use of information, resources, or other support from Panasonic Avionics Corporation. The final publication is available at Springer via https://doi.org/10.1007/s12583-017-0819-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne M. Hofmeister.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hofmeister, A.M., Criss, E.M. How Properties that Distinguish Solids from Fluids and Constraints of Spherical Geometry Suppress Lower Mantle Convection. J. Earth Sci. 29, 1–20 (2018). https://doi.org/10.1007/s12583-017-0819-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-017-0819-4

Key words

Navigation