Journal of Earth Science

, Volume 29, Issue 1, pp 78–92 | Cite as

Age, Geochemistry, and Tectonic Implications of Dulaerqiao Granite, Inner Mongolia

  • Anxia Chen
  • Duo Zhou
  • Qingkui Zhang
  • Zhongzhu Yang
Mineralogy and Petrogeochemistry
  • 2 Downloads

Abstract

Dulaerqiao granite is located at the Xinlin-Xiguitu-Toudaoqiao suture zone between the Erguna massif and the Xing’an massif, northeast of Inner Mongolia. The rocks are mainly composed of K-feldspar, quartz, and plagioclase. Zircon LA-ICP-MS U-Pb data show that this granite was deposited in the Late Carboniferous Period (308.7±2.0 Ma). The samples are rich in alkali, Fe, and Al and low in Mg, Ca, and P. Chondrite-normalized REEs exhibit right-inclined patterns with significant negative Eu anomalies. Additionally, the granite shows high quantities of trace elements such as Zr, Hf, Th, K, and Rb and decreased quantities of Sr, P, and Ti. The chemical characteristics identified herein and a series of diagrams that distinguish different types of granite show that Dulaerqiao alkali-feldspar granites belong to the aluminous A-type granite group. Meanwhile, the initial magma crystallizes under high-temperature, low-pressure conditions resulting from a tectonic extension setting. The formation of Dulaerqiao aluminous A-type granite is related to the rejuvenation of the ancient Xinlin-Xiguitu- Toudaoqiao suture zone, which was activated by the interaction between the combined Erguna-Xing’an massif and the Songnen massif in the Late Paleozoic Era. This aluminous A-type granite was deposited about 30 Ma after the collision.

Key words

aluminous A-type granite zircon U-Pb age geochemistry post-orogenic extensional environment rejuvenation of an ancient suture zone Dulaerqiao 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the foundation of “Geological and Mineral Surveys in Northern Part of Greater Xing’an Range Metallogenic Belt” (No. [2013]01-009-030). We thank the reviewers and the editors for the constructive comments. We also thank Dr. Kunyue Ling from Institute of Geochemistry Chinese Academy of Sciences for performing a careful reading of earlier version of this paper. The final publication is available at Springer via https://doi.org/10.1007/s12583-017-0817-6.

References Cited

  1. Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses that do not Report 204Pb. Chemical Geology, 192(1/2): 59–79. https://doi.org/10.1016/s0009-2541(02)00195-xCrossRefGoogle Scholar
  2. Atherton, M. P., Petford, N., 1993. Generation of Sodium-Rich Magmas from Newly Underplated Basaltic Crust. Nature, 362(6416): 144–146. https://doi.org/10.1038/362144a0CrossRefGoogle Scholar
  3. Audet, P., Bürgmann, R., 2011. Dominant Role of Tectonic Inheritance in Supercontinent Cycles. Nature Geoscience, 4(3): 184–187. https://doi.org/10.1038/ngeo1080CrossRefGoogle Scholar
  4. Barth, M. G., McDonough, W. F., Rudnick, R. L., 2000. Tracking the Budget of Nb and Ta in the Continental Crust. Chemical Geology, 165(3/4): 197–213. https://doi.org/10.1016/s0009-2541(99)00173-4CrossRefGoogle Scholar
  5. Batchelor, R. A., Bowden, P., 1985. Petrogenetic Interpretation of Granitoid Rock Series Using Multicationic Parameters. Chemical Geology, 48(1/2/3/4): 43–55. https://doi.org/10.1016/0009-2541(85)90034-8CrossRefGoogle Scholar
  6. Belousova, E., Griffin, W., O’Reilly, S. Y., et al., 2002. Igneous Zircon: Trace Element Composition as an Indicator of Source Rock Type. Contributions to Mineralogy and Petrology, 143(5): 602–622. https://doi.org/10.1007/s00410-002-0364-7CrossRefGoogle Scholar
  7. Blight, J. H. S., Crowley, Q. G., Petterson, M. G., et al., 2010. Granites of the Southern Mongolia Carboniferous Arc: New Geochronological and Geochemical Constraints. Lithos, 116(1/2): 35–52. https://doi.org/10.1016/j.lithos.2010.01.001CrossRefGoogle Scholar
  8. Boynton, W. V., 1984. Cosmochemistry of the Rare Earth Elements: Meteorite Studies. In: Henserson, P., ed., Rare Earth Element Geochemistry. Elsevier, Amsterdam. 63–114. https://doi.org/10.1016/B978-0-444-42148-7.50008-3CrossRefGoogle Scholar
  9. Chen, A. X., Zhou, D., Zhang, Q. K., et al., 2016. Tectonic and Sedimentary Environment in the Ordovician Period of Central Xing’an Block. Geoscience, 30(5): 1061–1071 (in Chinese with English Abstract)Google Scholar
  10. Chen, A. X., Zhou, D., Zhang, Q. K., et al., 2014. Late Paleozoic Tectonic Sedimentary Environment of Toudaoqiao Area in the North-Central Section of Daxinganling. Geology and Resources, 23(Suppl.): 1–8 (in Chinese with English Abstract)Google Scholar
  11. Chen, B., Jahn, B. M., Wilde, S., et al., 2000. Two Contrasting Paleozoic Magmatic Belts in Northern Inner Mongolia, China: Petrogenesis and Tectonic Implications. Tectonophysics, 328(1/2): 157–182. https://doi.org/10.1016/s0040-1951(00)00182-7CrossRefGoogle Scholar
  12. Collins, W. J., Beams, S. D., White, A. J. R., et al., 1982. Nature and Origin of A-Type Granites with Particular Reference to Southeastern Australia. Contributions to Mineralogy and Petrology, 80(2): 189–200. https://doi.org/10.1007/bf00374895CrossRefGoogle Scholar
  13. Creaser, R. A., Price, R. C., Wormald, R. J., 1991. A-Type Granites Revisited: Assessment of a Residual-Source Model. Geology, 19(2): 163–166. https://doi.org/10.1130/0091-7613(1991)019<0163:atgrao>2.3.co;2CrossRefGoogle Scholar
  14. Cui, F. H., Zheng, C. Q., Xu, X. C., et al., 2013. Late Carboniferous Magmatic Activities in the Quanshenglinchang Area, Great Xing’an Range: Constrains on the Timing of Amalgamation between Xing’an and Songnen Massifs. Acta Geologica Sinica, 87(9): 1247–1263 (in Chinese with English Abstract)Google Scholar
  15. Dargahi, S., Arvin, M., Pan, Y. M., et al., 2010. Petrogenesis of Post-Collisional A-Type Granitoids from the Urumieh-Dokhtar Magmatic Assemblage, Southwestern Kerman, Iran: Constraints on the Arabian–Eurasian Continental Collision. Lithos, 115(1/2/3/4): 190–204. https://doi.org/10.1016/j.lithos.2009.12.002CrossRefGoogle Scholar
  16. Defant, M. J., Drummond, M. S., 1990. Derivation of some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347(6294): 662–665. https://doi.org/10.1038/347662a0CrossRefGoogle Scholar
  17. Deng, J. F., Luo, Z. H., Su, S. G., et al., 2004. Petrogenesis, Tectonic Environment and Mineralization. Geological Publishing House, Beijing. 93–94 (in Chinese with English Abstract)Google Scholar
  18. Deng, X. Q., Peng, T. P., Zhao, T. P., 2016. Geochronology and Geochemistry of the Late Paleoproterozoic Aluminous A-Type Granite in the Xiaoqinling Area along the Southern Margin of the North China Craton: Petrogenesis and Tectonic Implications. Precambrian Research, 285: 127–146. https://doi.org/10.1016/j.precamres.2016.09.013CrossRefGoogle Scholar
  19. Dewey, J. F., 1988. Extensional Collapse of Orogens. Tectonics, 7(6): 1123–1139. https://doi.org/10.1029/tc007i006p01123CrossRefGoogle Scholar
  20. Dilek, Y., Furnes, H., 2011. Ophiolite Genesis and Global Tectonics: Geochemical and Tectonic Fingerprinting of Ancient Oceanic Lithosphere. Geological Society of America Bulletin, 123(3/4): 387–411. https://doi.org/10.1130/b30446.1CrossRefGoogle Scholar
  21. Eby, G. N., 1990. The A-Type Granitoids: A Review of Their Occurrence and Chemical Characteristics and Speculations on Their Petrogenesis. Lithos, 26(1/2): 115–134. https://doi.org/10.1016/0024-4937(90)90043-zCrossRefGoogle Scholar
  22. Eby, G. N., 1992. Chemical Subdivision of the A-Type Granitoids: Petrogenetic and Tectonic Implications. Geology, 20(7): 641. https://doi.org/10.1130/0091-7613(1992)020<0641:csotat>2.3.co;2CrossRefGoogle Scholar
  23. Feng, Z. Q., 2015. The Palezonic Tectono-Magmatic Evolution of the Northern Great Xing’an Range: [Dissertation]. Jilin University, Changchun.1–100 (in Chinese with English Abstract)Google Scholar
  24. Ge, W. C., Wu, F. Y., Zhou, C. Y., et al., 2005. Emplacement Age of the Tahe Granite and Its Constraints on the Tectonic Nature of the Ergun Block in the Northern Part of the Da Hinggan Range. Science Bulletin, 50(18): 2097–2105. https://doi.org/10.1007/bf03322807CrossRefGoogle Scholar
  25. Green, T. H., 1995. Significance of Nb/Ta as an Indicator of Geochemical Processes in the Crust-Mantle System. Chemical Geology, 120(3/4): 347–359. https://doi.org/10.1016/0009-2541(94)00145-xCrossRefGoogle Scholar
  26. Hong, D. W., Wang, S. G., Han, B. F., et al., 1995. Tectonic Environment, Classification and Identification Sign of Alkali Granite. Science in China (Series B), 25(4): 418–426 (in Chinese)Google Scholar
  27. Hong, D. W., Wang, S. G., Han, B. F., et al., 1996. Post-Orogenic Alkaline Granites from China and Comparisons with Anorogenic Alkaline Granites Elsewhere. Journal of Southeast Asian Earth Sciences, 13(1): 13–27. https://doi.org/10.1016/0743-9547(96)00002-5CrossRefGoogle Scholar
  28. Hoskin, P. W. O., Black, L. P., 2000. Metamorphic Zircon Formation by Solid-State Recrystallization of Protolith Igneous Zircon. Journal of Metamorphic Geology, 18(4): 423–439. https://doi.org/10.1046/j.1525-1314.2000.00266.xCrossRefGoogle Scholar
  29. Hoskin, P. W. O., 2005. Trace-Element Composition of Hydrothermal Zircon and the Alteration of Hadean Zircon from the Jack Hills Australia. Geochimica et Cosmochimica Acta, 69(3): 637–648. https://doi.org/10.1016/j.gca.2004.07.006CrossRefGoogle Scholar
  30. Hu, D. G., Tan, C. X., Zhang, H., 1995. Middle Proterozoic Ophiolites in the Alihe Area, Inner Mongolia. Regional Geology of China, (4): 334–343 (in Chinese with English Abstract)Google Scholar
  31. IMBGMR (Inner Mongolia Bureau of Geology Mineral Resources), 1996. Lithostratigraphy of Inner Mongolia Autonomous Region. China University of Geosciences Press, Wuhan. 46–53 (in Chinese)Google Scholar
  32. Jahn, B. M., Litvinovsky, B. A., Zanvilevich, A. N., et al., 2009. Peralkaline Granitoid Magmatism in the Mongolian-Transbaikalian Belt: Evolution, Petrogenesis and Tectonic Significance. Lithos, 113(3/4): 521–539. https://doi.org/10.1016/j.lithos.2009.06.015CrossRefGoogle Scholar
  33. Jia, X. H., Wang, Q., Tang, G. J., 2009. A-Type Granites: Research Progress and Implications. Geotectonica et Metallogenia, 33(3): 465–480. https://doi.org/10.16539/j.ddgzyckx.2009.03.012Google Scholar
  34. King, P. L., White, A. J. R., Chappell, B. W., et al., 1997. Characterization and Origin of Aluminous A-Type Granites from the Lachlan Fold Belt, Southeastern Australia. Journal of Petrology, 38(3): 371–391. https://doi.org/10.1093/petroj/38.3.371CrossRefGoogle Scholar
  35. Li, B. M., 2012. Geochemistry and Tectonic Background of the Volcanic Rocks of Early Carboniferous Moergenhe Formation in Nenjiang Area, Heilongjiang Province: [Dissertation]. Jilin University, Changchun. 1–50 (in Chinese with English Abstract)Google Scholar
  36. Li, R. S., 1991. Xinling Ophiolite. Heilongjiang Geology, 2(1): 19–31 (in Chinese with English Abstract)Google Scholar
  37. Li, Y., Xu, W. L., Wang, F., et al., 2014. Geochronology and Geochemistry of Late Paleozoic Volcanic Rocks on the Western Margin of the Songnen Zhangguangcai Range Massif, NE China: Implications for the Amalgamation History of the Xing’an and Songnen-Zhangguangcai Range Massifs. Lithos, 205: 394–410. https://doi.org/10.13039/501100001809CrossRefGoogle Scholar
  38. Liegeios, L. P., 1998. Preface-Some Words on the Post-Collisional Magmatism. Lithos, 45: 15–17Google Scholar
  39. Liu, C., Meng, L. S., 2010. Geophysical Field and Crustal Evolution in NE China. Geological Publishing House, Beijing. 82–190 (in Chinese with English Abstract)Google Scholar
  40. Liu, C. S., Chen, X. M., Chen, P. R., et al., 2003. Subdivision, Discrimination Criteria and Genesis for A Type Rock Suites. Geological Journal of China Universities, 9(4): 573–591 (in Chinese with English Abstract)Google Scholar
  41. Liu, Y. J., Zhang, X. Z., Jin, W., et al., 2010. Late Paleozoic Tectonic Evolution in Northeast China. Geology in China, 37(4): 943–951 (in Chinese with English Abstract)Google Scholar
  42. Ludwig, K. R., 2003. User’s Manual for Isoplot 3.0: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, BerkeleyGoogle Scholar
  43. Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635–643. https://doi.org/10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2CrossRefGoogle Scholar
  44. Miao, L. C., Fan, W. M., Zhang, F. Q., et al., 2004. Zircon SHRIMP Geochronology of the Xinkailing-Kele Complex in the Northwestern Lesser Xing’an Range, and Its Geological Implications. Chinese Science Bulletin, 49(2): 201–209. https://doi.org/10.1360/03wd0316CrossRefGoogle Scholar
  45. Pan, G. T., Xiao, Q. H., Lu, S. N, et al., 2009. Subdivision of Tectonic Units in China. Geology in China, 36(1): 1–28 (in Chinese with English Abstract)Google Scholar
  46. Pankhurst, M. J., Schaefer, B. F., Turner, S. P., et al., 2013. The Source of A-Type Magmas in Two Contrasting Settings: U-Pb, Lu-Hf and Re-Os Isotopic Constraints. Chemical Geology, 351(5): 175–194. https://doi.org/10.13039/501100001230CrossRefGoogle Scholar
  47. Patiño Douce, A. E., 1999. What do Experiments Tell Us about the Relative Contributions of Crust and Mantle to the Origin of Granitic Magmas?. Geological Society, London, Special Publications, 168(1): 55–75. https://doi.org/10.1144/gsl.sp.1999.168.01.05CrossRefGoogle Scholar
  48. Pearce, J., 1996. Sources and Settings of Granitic Rocks. Episodes, 19(4): 120–125Google Scholar
  49. Poitrasson, F., Duthou, J. L., Pin, C., 1995. The Relationship between Petrology and Nd Isotopes as Evidence for Contrasting Anorogenic Granite Genesis: Example of the Corsican Province (SE France). Journal of Petrology, 36(5): 1251–1274. https://doi.org/10.1093/petrology/36.5.1251CrossRefGoogle Scholar
  50. Qiu. J. S., Wang, D. Z., Satoshi, K., et al., 2000. Geochemistry and Petrogenesis of Aluminous A-Type Granites in the Coastal Area of Fujian Province. Geochimica, 29(4): 313–321 (in Chinese with English Abstract)Google Scholar
  51. Rampone, E., Piccardo, G. B., 2000. The Ophiolite-Oceanic Lithosphere Analogue: New Insights from the Northern Apennines (Italy). Geological Society of America Special Paper, 349: 21–34. https://doi.org/10.1130/0-8137-2349-3.21Google Scholar
  52. Robinson, P. T., Zhou, M. F., Hu, X. F., et al., 1999. Geochemical Constraints on the Origin of the Hegenshan Ophiolite, Inner Mongolia, China. Journal of Asian Earth Sciences, 17(4): 423–442. https://doi.org/10.1016/s1367-9120(99)00016-4CrossRefGoogle Scholar
  53. Ryan, P. D., Dewey, J. F., 1997. Continental Eclogites and the Wilson Cycle. Journal of the Geological Society, 154(3): 437–442. https://doi.org/10.1144/gsjgs.154.3.0437CrossRefGoogle Scholar
  54. Şengör, A. M. C., Natal’in, B. A., Burtman, V. S., 1993. Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia. Nature, 364(6435): 299–307. https://doi.org/10.1038/364299a0CrossRefGoogle Scholar
  55. Shao, X. F., 2016. Geochemical Characteristics and Geological Significance of Ophiolite from Maihantewula, Southwest Section of Tayuan-Toudaoqiao Matching Belt in Inner Mongolia. Global Geology, 35(2): 429–440 (in Chinese with English Abstract). https://doi.org/10.3969/j.issn.1004-5589.2016.02.014Google Scholar
  56. She, H. Q., Li, J. W., Xiang, A. P., et al., 2012. U-Pb Ages of the Zircons from Primary Rocks in Middle-Northern Daxinganling and Its Implications to Geotectonic Evolution. Acta Petrologica Sinica, 28(2): 571–594 (in Chinese with English Abstract)Google Scholar
  57. Shellnutt, J. G., Zhou, M. F., 2007. Permian Peralkaline, Peraluminous and Metaluminous A-Type Granites in the Panxi District, SW China: Their Relationship to the Emeishan Mantle Plume. Chemical Geology, 243(3/4): 286–316. https://doi.org/10.1016/j.chemgeo.2007.05.022CrossRefGoogle Scholar
  58. Shi, G. H., Miao, L. C., Zhang, F. Q., et al., 2004. Emplacement Age and Tectonic Implications of the Xilinhot A-Type Granite in Inner Mongolia, China. Chinese Science Bulletin, 49(4): 384–389 (in Chinese). https://doi.org/10.1360/03wd0436Google Scholar
  59. Skjerlie, K. P., Johnston, A. D., 1992. Vapor-Absent Melting at 10 kbar of a Biotite-and Amphibole-Bearing Tonalitic Gneiss: Implications for the Generation of A-Type Granites. Geology, 20(3): 263. https://doi.org/10.1130/0091-7613(1992)020<0263:vamako>2.3.co;2CrossRefGoogle Scholar
  60. Sui, Z. M., Ge, W. C., Xu, X. C., et al., 2009. Characteristics and Geological Implications of the Late Paleozoic Post-Orogenic Shierzhan Granite in the Great Xing’an Range. Acta Petrologica Sina, 25(10): 2679–2686 (in Chinese with English Abstract)Google Scholar
  61. Sun, D. Y., Wu, F. Y., Li, H. M., et al., 2001. Emplacement Age of the Postorogenic A-Type Granites in Northwestern Lesser Xing’an Ranges, and Its Relationship to the Eastward Extension of Suolushan-Hegenshan-Zhalaite Collisional Suture Zone. Chinese Science Bulletin, 46(5): 427–432. https://doi.org/10.1007/bf03183282CrossRefGoogle Scholar
  62. Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313–345. https://doi.org/10.1144/gsl.sp.1989.042.01.19CrossRefGoogle Scholar
  63. Sun, X. M., Liu, C., Zhu, D. F., et al., 2011. Geophysical Features and Tectonic Attribute of the Derbugan Fault in the Western Slope of Da Hinggan Ling Mountains. Chinese Journal of Geophysics, 54(2): 433–440 (in Chinese with English Abstract). https://doi.org/10.3969/J.ISSN.0001-5733.2011.02.021Google Scholar
  64. Sylvester, P. J., 1989. Post-Collisional Alkaline Granites. The Journal of Geology, 97(3): 261–280. https://doi.org/10.1086/629302CrossRefGoogle Scholar
  65. Turner, S., Sandiford, M., Foden, J., 1992. Some Geodynamic and Compositional Constraints on “Postorogenic” Magmatism. Geology, 20(10): 931. https://doi.org/10.1130/0091-7613(1992)020<0931:sgacco>2.3.co;2CrossRefGoogle Scholar
  66. Wang, C. W., Jin, W., Zhang, X. Z., et al., 2008. New Understanding of the Late Paleozoic Tectonics in Northeastern China and Adjacent Areas. Journal of Stratigraphy, 32(2): 119–136 (in Chinese with English Abstract). https://doi.org/10.3969/j.issn.0253-4959.2008.02.001Google Scholar
  67. Wang, X. W., Liu, Y. Y., 1997. Pre-Mesozoic Tectonic Evolution and Its Relation with Development of Late Mesozoic Basin in Northeastern China. Geoscience, 11(4): 434–443 (in Chinese with English Abstract)Google Scholar
  68. Watson, E. B., Harrison, T. M., 1983. Zircon Saturation Revisited: Temperature and Composition Effects in a Variety of Crustal Magma Types. Earth and Planetary Science Letters, 64(2): 295–304. https://doi.org/10.1016/0012-821x(83)90211-xCrossRefGoogle Scholar
  69. Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407–419. https://doi.org/10.1007/bf00402202CrossRefGoogle Scholar
  70. Wilson, M., 2001. Igneous Petrogenesis. Kluwer Academic Publishers, London. 7–12Google Scholar
  71. Wu, F. Y., Li, X. H., Yang, J. H., et al., 2007. Discussion on the Petrogenesis of Granites. Acta Petrologica Sinica, 23(6): 1217–1238 (in Chinese with English Abstract)Google Scholar
  72. Wu, F. Y., Sun, D. Y., Ge, W. C., et al., 2011. Geochronology of the Phanerozoic Granitoids in Northeastern China. Journal of Asian Earth Sciences, 41(1): 1–30. https://doi.org/10.1016/j.jseaes.2010.11.014CrossRefGoogle Scholar
  73. Xiong, F. H., Ma, C. Q., Jiang, H. A., et al., 2016. Geochronology and Petrogenesis of Triassic High-K Calc-Alkaline Granodiorites in the East Kunlun Orogen, West China: Juvenile Lower Crustal Melting during Post-Collisional Extension. Journal of Earth Science, 27(3): 474–490. https://doi.org/10.1007/s12583-016-0674-6CrossRefGoogle Scholar
  74. Yarmolyuk, V. V., Kovalenko, V. I., Sal’nikova, E. B., et al., 2008. Geochronology of Igneous Rocks and Formation of the Late Paleozoic South Mongolian Active Margin of the Siberian Continent. Stratigraphy and Geological Correlation, 16(2): 162–181. https://doi.org/10.1134/s0869593808020056CrossRefGoogle Scholar
  75. Zhang, L., Liu, Y. J., Li, W. M., et al., 2013. Discussion on the Basement Properties and East Boundary of the Ergun Massif. Chinese Journal of Geology, 48(1): 227–244 (in Chinese with English Abstract). https://doi.org/10.3969/j.issn.0563-5020.2013.01.015Google Scholar
  76. Zhang, Q., Wang, Y., Li, C. D., et al., 2006. A Granite Classification Based on Pressures. Geological Bulletin of China, 25(11): 1274–1278 (in Chinese with English Abstract)Google Scholar
  77. Zhang, Q., 2011. Reappraisal of the Origin of C-Type Adakitic Rocks from East China. Acta Petrologica et Mineralogica, 30(4): 739–747 (in Chinese with English Abstract)Google Scholar
  78. Zhang, X. H., Yuan, L. L., Xue, F. H., et al., 2015. Early Permian A-Type Granites from Central Inner Mongolia, North China: Magmatic Tracer of Post-Collisional Tectonics and Oceanic Crustal Recycling. Gondwana Research, 28(1): 311–327. https://doi.org/10.13039/501100001809CrossRefGoogle Scholar
  79. Zhang, Y. Q., Xu, L. Q., Kang, X. L., et al., 2009. Age Dating of Alkali Granite in Jingesitai Area of Dong Ujimqin Banner, Inner Mongolia, and Its Significance. Geology in China, 36(5): 988–995 (in Chinese with English Abstract)Google Scholar
  80. Zhao, L. M., Takasu, A., Liu, Y. J., et al., 2017. Blueschist from the Toudaoqiao Area, Inner Mongolia, NE China: Evidence for the Suture between the Ergun and the Xing’an Blocks. Journal of Earth Science, 28(2): 241–248. https://doi.org/10.1007/s12583-017-0721-0CrossRefGoogle Scholar
  81. Zhao, Z., Chi, X. G., Pan, S. Y., et al., 2010. Zircon U-Pb LA-ICP-MS Dating of Carboniferous Volcanics and Its Geological Significance in the Northwestern Lesser Xing’an Range. Acta Petroligica Sinica, 26(8): 2452–2464 (in Chinese with English Abstract)Google Scholar
  82. Zheng, C. Q., Zhou, J. B, Jin, W., et al., 2009. Geochronology in the North Segment of the Derbugan Fault Zone, Great Xing’an Range, NE China. Acta Petrologica Sinica, 25(8): 1989–2000 (in Chinese with English Abstract)Google Scholar
  83. Zhou, J. B., Wang, B., Wilde, S. A., et al., 2015. Geochemistry and U-Pb Zircon Dating of the Toudaoqiao Blueschists in the Great Xing’an Range, Northeast China, and Tectonic Implications. Journal of Asian Earth Sciences, 97: 197–210. https://doi.org/10.1016/j.jseaes.2014.07.011CrossRefGoogle Scholar
  84. Zhou, J. B., Wilde, S. A., 2013. The Crustal Accretion History and Tectonic Evolution of the NE China Segment of the Central Asian Orogenic Belt. Gondwana Research, 23(4): 1365–1377. https://doi.org/10.13039/501100002855CrossRefGoogle Scholar
  85. Zhou, J. B., Wilde, S. A., Zhang, X. Z., et al., 2011. A >1 300 km Late Pan-African Metamorphic Belt in NE China: New Evidence from the Xing’an Block and Its Tectonic Implications. Tectonophysics, 509(3/4): 280–292. https://doi.org/10.1016/j.tecto.2011.06.018CrossRefGoogle Scholar
  86. Zhou, M. F., Zhang, H. F., Robinson, P. T., et al., 2004. Comments on “Petrology of the Hegenshan Ophiolite and Its Implication for the Tectonic Evolution of Northern China” by T. 89–104]. Earth and Planetary Science Letters, 217(1/2): 207–210. https://doi.org/10.1016/s0012-821x(03)00596-xCrossRefGoogle Scholar
  87. Zhou, Z. M., Ma, C. Q., Xie, C. F., et al., 2016. Genesis of Highly Fractionated I-Type Granites from Fengshun Complex: Implications to Tectonic Evolutions of South China. Journal of Earth Science, 27(3): 444–460. https://doi.org/10.1007/s12583-016-0677-3CrossRefGoogle Scholar

Copyright information

© China University of Geosciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Ocean CollegeZhejiang UniversityZhoushanChina
  2. 2.Liaoning Institute of Geological ExplorationDalianChina
  3. 3.Shenyang CenterChina Geological SurveyShenyangChina

Personalised recommendations