Skip to main content
Log in

Development and Evolution of the Size of Polygonal Fracture Systems during Fluid-Solid Separation in Clay-Rich Deposits

  • Geophysical Imaging from Subduction Zones to Petroleum Reservoirs
  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

In continental and oceanic conditions, clay-rich deposits are characterised by the development of polygonal fracture systems (PFS). PFS can increase the vertical permeability of clay-rich deposits (mean permeability ≤10-16 m2) and are pathways for fluids. On continents, the width of PFS ranges from centimeters to hundreds of meters, while in oceanic contexts they are up to a few kilometres large. These structures are linked to water-solid separation during deposition, consolidation and complete fluid squeeze of the clay horizon. During the last few decades, modeling of melt migration in partially molten plastic rocks led to rigorous quantifications of two-phase flows with a particular emphasis on 2D and 3D induced flow structures. The numerical modeling shows that the melt migrates on distances at most equal to a few times the compaction length L that depends on permeability and viscosity. Consequently, polygonal structures in partially molten plastic rocks result from the melt-rock separation and their sizes are proportional to L. Applying these results to fluid-solid separation in clay-rich horizons, we show that (1) centimetric to kilometric PFS result from the dramatic increase of L during compaction and (2), this process involve agglomerates with 100 μm to 1 mm size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References Cited

  • Alba-Simionesco, C., Coasne, B., Dosseh, G., et al., 2006. Effects of Confinement on Freezing and Melting. Journal of Physics: Condensed Matter, 18(6): R15–R68. https://doi.org/10.1088/0953-8984/18/6/r01

    Google Scholar 

  • Alsharhan, A. S., Kendall, C. G. S. C., 2003. Holocene Coastal Carbonates and Evaporites of the Southern Arabian Gulf and their Ancient Analogues. Earth-Science Reviews, 61(3/4): 191–243. https://doi.org/10.1016/s0012-8252(02)00110-1

    Article  Google Scholar 

  • Andresen, K. J., Huuse, M., 2011. ‘Bulls-Eye’ Pockmarks and Polygonal Faulting in the Lower Congo Basin: Relative Timing and Implications for Fluid Expulsion during Shallow Burial. Marine Geology, 279(1/2/3/4): 111–127. https://doi.org/10.1016/j.margeo.2010.10.016

    Article  Google Scholar 

  • Baer, J. U., Kent, T. F., Anderson, S. H., 2009. Image Analysis and Fractal Geometry to Characterize Soil Desiccation Cracks. Geoderma, 154(1/2): 153–163. https://doi.org/10.1016/j.geoderma.2009.10.008

    Article  Google Scholar 

  • Bercovici, D., Ricard, Y., Schubert, G., 2001. A Two-Phase Model for Compaction and Damage: 1. General Theory. Journal of Geophysical Research: Solid Earth, 106(B5): 8887–8906. https://doi.org/10.1029/2000jb900430

    Article  Google Scholar 

  • Bernaud, D., Dormieux, L., Maghous, S., 2006. A Constitutive and Numerical Model for Mechanical Compaction in Sedimentary Basins. Computers and Geotechnics, 33(6/7): 316–329. https://doi.org/10.1016/j.compgeo.2006.05.004

    Article  Google Scholar 

  • Bishop, A. W., Green, G. E., Garga, V. K., et al., 1971. A New Ring Shear Apparatus and Its Application to the Measurement of Residual Strength. Géotechnique, 21(4): 273–328. https://doi.org/10.1680/geot.1971.21.4.273

    Article  Google Scholar 

  • Brinker, C. J., Schere, G. W., 1990. Sol-Gel Science: The Physic and Chemistry of Gel Processing. Academic Press, San Diego

    Google Scholar 

  • Buessem, W. R., Nagy, B., 1954. The Mechanism of the Deformation of Clay. Clays and Clay Minerals, 2(1): 480–491. https://doi.org/10.1346/ccmn.1953.0020138

    Article  Google Scholar 

  • Carman, P. C., 1961. L’écoulement des Gaz à Travers les Milieux Poreux. Press Univ. de Fr., Paris

    Google Scholar 

  • Cartwright, J. A., 1994. Episodic Basin-Wide Hydrofracturing of Overpressured Early Cenozoic Mudrock Sequences in the North Sea Basin. Marine and Petroleum Geology, 11(5): 587–607. https://doi.org/10.1016/0264-8172(94)90070-1

    Article  Google Scholar 

  • Cartwright, J. A., Lonergan, L., 1996. Volumetric Contraction during the Compaction of Mudrocks: A Mechanism for the Development of Regional-Scale Polygonal Fault Systems. Basin Research, 8(2): 183–193. https://doi.org/10.1046/j.1365-2117.1996.01536.x

    Article  Google Scholar 

  • Cartwright, J. A., Dewhurst, D. N., 1998. Layer-Bound Compaction Faults in Fine-Grained Sediments. Geological Society of America Bulletin, 110(10): 1242–1257. https://doi.org/10.1130/0016-7606(1998)110<1242:lbcfif>2.3.co;2

    Article  Google Scholar 

  • Cartwright, J., James, D., Bolton, A., 2003. The Genesis of Polygonal Fault Systems: A Review. Geological Society, London, Special Publications, 216(1): 223–243. https://doi.org/10.1144/gsl.sp.2003.216.01.15

    Article  Google Scholar 

  • Casagrande, A., 1932. The Structure of Clay and Its Importance in the Foundation Engineering. J. Boston Soc. Civil Eng., 19: 168

    Google Scholar 

  • Christidis, G. E., Dellisanti, F., Valdre, G., et al., 2005. Structural Modifications of Smectites Mechanically Deformed under Controlled Conditions. Clay Minerals, 40(4): 511–522. https://doi.org/10.1180/0009855054040188

    Article  Google Scholar 

  • Connolly, J. A. D., Podladchikov, Y. Y., 2000. Temperature-Dependent Viscoelastic Compaction and Compartmentalization in Sedimentary Basins. Tectonophysics, 324(3): 137–168. https://doi.org/10.1016/s0040-1951(00)00084-6

    Article  Google Scholar 

  • Connolly, J. A. D., Podladchikov, Y. Y., 2013. A Hydromechanical Model for Lower Crustal Fluid Flow. In: Metasomatism and the Chemical Transformation of Rock. Springer Berlin Heidelberg, Berlin, Heidelberg. 599–658

    Google Scholar 

  • Connolly, J. A. D., Podladchikov, Y. Y., 2014. An Analytical Solution for Solitary Porosity Waves: Dynamic Permeability and Fluidization of Nonlinear Viscous and Viscoplastic Rock. Geofluids, 15(1/2): 269–292. https://doi.org/10.1111/gfl.12110

    Google Scholar 

  • Davies, R., Cartwright, J., Rana, J., 1999. Giant Hummocks in Deep-Water Marine Sediments: Evidence for Large-Scale Differential Compaction and Density Inversion during Early Burial. Geology, 27(10): 907. https://doi.org/10.1130/0091-7613(1999)027<0907:ghidwm>2.3.co;2

    Article  Google Scholar 

  • Davies, R. J., Ireland, M. T., Cartwright, J. A., 2009. Differential Compaction due to the Irregular Topology of a Diagenetic Reaction Boundary: A New Mechanism for the Formation of Polygonal Faults. Basin Research, 21(3): 354–359. https://doi.org/10.1111/j.1365-2117.2008.00389.x

    Article  Google Scholar 

  • Davies, R. J., Ireland, M. T., 2011. Initiation and Propagation of Polygonal Fault Arrays by Thermally Triggered Volume Reduction Reactions in Siliceous Sediment. Marine Geology, 289(1/2/3/4): 150–158. https://doi.org/10.1016/j.margeo.2011.05.005

    Article  Google Scholar 

  • Dewhurst, D. N., Cartwright, J. A., Lonergan, L., 1999. The Development of Polygonal Fault Systems by Syneresis of Colloidal Sediments. Marine and Petroleum Geology, 16(8): 793–810. https://doi.org/10.1016/s0264-8172(99)00035-5 De

    Article  Google Scholar 

  • Paola, N., Collettini, C., Trippetta, F., et al., 2007. A Mechanical Model for Complex Fault Patterns Induced by Evaporite Dehydration and Cyclic Changes in Fluid Pressure. Journal of Structural Geology, 29(10): 1573–1584. https://doi.org/10.1016/j.jsg.2007.07.015

    Article  Google Scholar 

  • Engelhardt, W. V., Gaida, K. H., 1963. Concentration Changes of Pore Solutions during Compaction of Clay Sediments. Journal of Sedimentary Research, 33(4): 919–930. https://doi.org/10.1306/74d70f74-2b21-11d7-8648000102c1865d

    Article  Google Scholar 

  • Fowler, A. C., 1984. On the Transport of Moisture in Polythermal Glaciers. Geophysical & Astrophysical Fluid Dynamics, 28(2): 99–140. https://doi.org/10.1080/03091928408222846

    Article  Google Scholar 

  • Gardien, V., Rabinowicz, M., Vigneresse, J. L., et al., 2016. Long-Lived Interaction between Hydrothermal and Magmatic Fluids in the Soultz-Sous-Forêts Granitic System (Rhine Graben, France). Lithos, 246/247: 110–127. https://doi.org/10.1016/j.lithos.2015.12.002

    Article  Google Scholar 

  • Gay, A., Lopez, M., Cochonat, P., et al., 2004. Polygonal Faults-Furrows System Related to Early Stages of Compaction—Upper Miocene to Recent Sediments of the Lower Congo Basin. Basin Research, 16(1): 101–116. https://doi.org/10.1111/j.1365-2117.2003.00224.x

    Article  Google Scholar 

  • Goulty, N. R., 2001. Polygonal Fault Networks in Fine-Grained Sediments—An Alternative to the Syneresis Mechanism. First Break, 19(2): 69–73. https://doi.org/10.1046/j.1365-2397.2001.00137.x

    Article  Google Scholar 

  • Goulty, N. R., 2002. Mechanics of Layer-Bound Polygonal Faulting in Fine-Grained Sediments. Journal of the Geological Society, 159(3): 239–246. https://doi.org/10.1144/0016-764901-111

    Article  Google Scholar 

  • Goulty, N. R., 2008. Geomechanics of Polygonal Fault Systems: A Review. Petroleum Geoscience, 14(4): 389–397. https://doi.org/10.1144/1354-079308-781

    Article  Google Scholar 

  • Grégoire, M., Rabinowicz, M., Janse, A. J. A., 2006. Mantle Mush Compaction: A Key to Understand the Mechanisms of Concentration of Kimberlite Melts and Initiation of Swarms of Kimberlite Dykes. Journal of Petrology, 47(3): 631–646. https://doi.org/10.1093/petrology/egi090

    Article  Google Scholar 

  • Haberlah, D., McTainsh, G. H., 2011. Quantifying Particle Aggregation in Sediments. Sedimentology, 58(5): 1208–1216. https://doi.org/10.1111/j.1365-3091.2010.01201.x

    Article  Google Scholar 

  • Hamaker, H. C., 1937. The London—van Der Waals Attraction between Spherical Particles. Physica, 4(10): 1058–1072. https://doi.org/10.1016/s0031-8914(37)80203-7

    Article  Google Scholar 

  • Hansen, D. M., Shimeld, J. W., Williamson, M. A., et al., 2004. Development of a Major Polygonal Fault System in Upper Cretaceous Chalk and Cenozoic Mudrocks of the Sable Subbasin, Canadian Atlantic Margin. Marine and Petroleum Geology, 21(9): 1205–1219. https://doi.org/10.1016/j.marpetgeo.2004.07.004

    Article  Google Scholar 

  • Harris, R. C., 2004. Giant Desiccation Cracks in Arizona. Arizona Geological Survey, Arizona. Open-File Report 04-01. 1–93

    Google Scholar 

  • Henriet, J., De Batist, M., Van Vaerenbergh, W., et al., 1991. Seismic Facies and Clay Tectonic Features of the Ypresian Clay in the Southern North Sea. In: Proc. of the ‘Intern. Symposium on the Ypresian Stage’. Bull. Belg. Ver. Geol., 97(3/4): 457–472

    Google Scholar 

  • Hibsch, C., Cartwright, J., Hansen, D. M., et al., 2003. Normal Faulting in Chalk: Tectonic Stresses vs. Compaction-related polygonal faulting. In: Van Rensbergen, P., Hillis, R. R., Maltman, A. J., et al., eds., Subsurface Sediment Mobilization. Geol. Soc. Spec. Publ., 216: 291–308

    Google Scholar 

  • Higgs, W. G., McClay, K. R., 1993. Analogue Sandbox Modelling of Miocene Extensional Faulting in the Outer Moray Firth. Geological Society, London, Special Publications, 71(1): 141–162. https://doi.org/10.1144/gsl.sp.1993.071.01.07

    Article  Google Scholar 

  • Holdich, R. G., 2002. Fundamental of Particle Technology. Chap. 13 Colloïds and Agglomeration. Midland Information Technology and Publishing, Shepshed, Leicestershire

    Google Scholar 

  • Hooker, M. L., Herron, G. M., Penas, P., 1982. Effects of Residue Burning, Removal, and Incorporation on Irrigated Cereal Crop Yields and Soil Chemical Properties1. Soil Science Society of America Journal, 46(1): 122. https://doi.org/10.2136/sssaj1982.03615995004600010023x

    Article  Google Scholar 

  • Hustoft, S., Mienert, J., Bünz, S., et al., 2007. High-Resolution 3D-Seismic Data Indicate Focussed Fluid Migration Pathways above Polygonal Fault Systems of the Mid-Norwegian Margin. Marine Geology, 245(1/2/3/4): 89–106. https://doi.org/10.1016/j.margeo.2007.07.004

    Article  Google Scholar 

  • Kaila, A., 1952. Observations on the Effect of Nitrogen and Phosphorus upon the Humification of Straw. Acta Agralia Fennica, 78(2): 1–27

    Google Scholar 

  • Karig, D. E., Hou, G., 1992. High-Stress Consolidation Experiments and Their Geologic Implications. Journal of Geophysical Research, 97(B1): 289. https://doi.org/10.1029/91jb02247

    Article  Google Scholar 

  • Kocurek, G., Hunter, R. E. 1986. Origin of Polygonal Fractures in Sand, Uppermost Navajo and Page Sandstones, Page, Arizona. SEPM Journal of Sedimentary Research, 56(6): 895–904. https://doi.org/10.1306/212f8a7b-2b24-11d7-8648000102c1865d

    Google Scholar 

  • Kopf, A., Behrmann, J. H., 2000. Extrusion Dynamics of Mud Volcanoes on the Mediterranean Ridge Accretionary Complex. In: Vendeville, B., Mart, Y., Vigneresse, J.-L., eds., From the Arctic to the Mediterranean: Salt, Shale, and Igneous Diapirs in and Around Europe. Geol. Soc. Spec. Publ., 174: 169–204

    Google Scholar 

  • Kopf, A. J., 2002. Significance of Mud Volcanism. Reviews of Geophysics, 40(2). https://doi.org/10.1029/2000rg000093

    Google Scholar 

  • Kopf, A. J., Clennell, M. B., Brown, K. M., 2005. Physical Properties of Muds Extruded from Mud Volcanoes: Implications for Episodicity of Eruptions and Relationship to Seismicity. In: Martinelli, G., Panahi, B., eds., Mud Volcanoes, Geodynamics and Seismicity. 263–283

  • Lee-Desautel, R., 2005. Theory of van der Waals Forces as Applied to Particlate Materials. Educ. Reso. for Part. Techn.

    Google Scholar 

  • Li, H. P., Zhu, Y. L., Zhang, J. B., et al., 2004. Effects of Temperature, Strain Rate and Dry Density on Compressive Strength of Saturated Frozen Clay. Cold Regions Science and Technology, 39(1): 39–45. https://doi.org/10.1016/j.coldregions.2004.01.001

    Article  Google Scholar 

  • Li, J. H., Zhang, L. M., 2011. Study of Desiccation Crack Initiation and Development at Ground Surface. Engineering Geology, 123(4): 347–358. https://doi.org/10.1016/j.enggeo.2011.09.015

    Article  Google Scholar 

  • Li, X. J., Wang, P. X., Xu, C. Z., et al., 2008. Clay Minerals Distribution in Surface Sediments in Western South China Sea and Provenance. Marine Geol. Quatern. Geol., 28: 9–16 (in Chinese with English Abstract)

    Google Scholar 

  • Lifshitz, E. M., 1956. The Theory of Molecular Attractive Force Between Solids. Soviet Physics, 2(1): 73

    Google Scholar 

  • Lonergan, L., Cartwright, J., Jolly, R., 1998. The Geometry of Polygonal Fault Systems in Tertiary Mudrocks of the North Sea. Journal of Structural Geology, 20(5): 529–548. https://doi.org/10.1016/s0191-8141(97)00113-2

    Article  Google Scholar 

  • Lowenstein, T. K., Hardie, L. A., 1985. Criteria for the Recognition of Salt-Pan Evaporites. Sedimentology, 32(5): 627–644. https://doi.org/10.1111/j.1365-3091.1985.tb00478.x

    Article  Google Scholar 

  • Luo, X. R., Vasseur, G., 2002. Natural Hydraulic Cracking: Numerical Model and Sensitivity Study. Earth and Planetary Science Letters, 201(2): 431–446. https://doi.org/10.1016/s0012-821x(02)00711-2

    Article  Google Scholar 

  • Lynch, J. M., Elliott, L. F., 1983. Aggregate Stabilization of Volcanic Ash and Soil during Microbial Degradation of Straw. Appl. Environ. Microbiol., 45(4): 1398–1401

    Google Scholar 

  • Mangold, N., Allemand, P., Duval, P., et al., 2002. Experimental and Theoretical Deformation of Ice-Rock Mixtures: Implications on Rheology and Ice Content of Martian Permafrost. Planetary and Space Science, 50(4): 385–401. https://doi.org/10.1016/s0032-0633(02)00005-3

    Article  Google Scholar 

  • Martin, J. P., 1942. The Effect of Composts and Compost Materials Upon the Aggregation of the Silt and Clay Particles of Collington Sandy Loam. Soil Science Society of America Journal, 7: 218–222. https://doi.org/10.2136/sssaj1943.036159950007000c0033x

    Article  Google Scholar 

  • McKenzie, D., 1984. The Generation and Compaction of Partially Molten Rock. Journal of Petrology, 25(3): 713–765. https://doi.org/10.1093/petrology/25.3.713

    Article  Google Scholar 

  • McGeary, R. K., 1961. Mechanical Packing of Spherical Particles. Journal of the American Ceramic Society, 44(10): 513–522. https://doi.org/10.1111/j.1151-2916.1961.tb13716.x

    Article  Google Scholar 

  • Mondol, N. H., Bjørlykke, K., Jahren, J., et al., 2007. Experimental Mechanical Compaction of Clay Mineral Aggregates—Changes in Physical Properties of Mudstones during Burial. Marine and Petroleum Geology, 24(5): 289–311. https://doi.org/10.1016/j.marpetgeo.2007.03.006

    Article  Google Scholar 

  • Moses, G. G., Rao, S. N., Rao, P. N., 2003. Undrained Strength Behaviour of a Cemented Marine Clay under Monotonic and Cyclic Loading. Ocean Engineering, 30(14): 1765–1789. https://doi.org/10.1016/s0029-8018(03)00018-0

    Article  Google Scholar 

  • Murray, H. H., 1991. Overview—Clay Mineral Applications. Applied Clay Science, 5(5/6): 379–395. https://doi.org/10.1016/0169-1317(91)90014-z

    Article  Google Scholar 

  • Neal, J. T., Langer, A. M., Kerr, P. F., 1968. Giant Desiccation Polygons of Great Basin Playas. Geological Society of America Bulletin, 79(1): 69. https://doi.org/10.1130/0016-7606(1968)79[69:gdpogb]2.0.co;2

    Article  Google Scholar 

  • Neumann, M. G., Gessner, F., Schmitt, C. C., et al., 2002. Influence of theLayer Charge and Clay Particle Size on the Interactions between the Cationic Dye Methylene Blue and Clays in an Aqueous Suspension. Journal of Colloid and Interface Science, 255(2): 254–259. https://doi.org/10.1006/jcis.2002.8654

    Article  Google Scholar 

  • Okamoto, A., Shimizu, H., 2015. Contrasting Fracture Patterns Induced by Volume-Increasing and-Decreasing Reactions: Implications for the Progress of Metamorphic Reactions. Earth and Planetary Science Letters, 417: 9–18. https://doi.org/10.13039/501100001700

    Article  Google Scholar 

  • Osipov, V. I., 1975. Structural Bonds and the Properties of Clays. Bulletin of the International Association of Engineering Geology, 12(1): 13–2 doi: 10.1007/BF02635423

    Article  Google Scholar 

  • Osipov, V. I., Sokolov, V. N., 1978. Relation between the Microfabric of Clay Soils and Their Origin and Degree of Compaction. Bulletin of the International Association of Engineering Geology, 18(1): 73–81. https://doi.org/10.1007/bf02635351

    Article  Google Scholar 

  • Pansu, M., Gautheyrou, J., 2006. Handbook of Soil Analysis: Mineralogical, Organic and Inorganic Methods. Springer-Verlag Berlin Heidelberg, New York

    Book  Google Scholar 

  • Paszkowski, M., 2013. Some Aspects of Grease Flow in Lubrication Systems and Friction Nodes, Tribology—Fundamentals and Advancements. (2013-5-22) [2018-4-8]. https://mts.intechopen.com/books/tribology-fundamentals-andadvancements/some-aspects-of-grease-flow-in-lubrication-systems-andfriction-nodes

    Google Scholar 

  • Pratt, B. R., 1998. Syneresis Cracks: Subaqueous Shrinkage in Argillaceous Sediments Caused by Earthquake-Induced Dewatering. Sedimentary Geology, 117(1/2): 1–10. https://doi.org/10.1016/s0037-0738(98)00023-2

    Article  Google Scholar 

  • Quaicoe, I., Nosrati, A., Skinner, W., et al., 2013. Agglomeration Behaviour and Product Structure of Clay and Oxide Minerals. Chemical Engineering Science, 98: 40–50. https://doi.org/10.1016/j.ces.2013.03.034

    Article  Google Scholar 

  • Rabinowicz, M., Genthon, P., Ceuleneer, G., et al., 2001. Compaction in a Mantle Mush with High Melt Concentrations and the Generation of Magma Chambers. Earth and Planetary Science Letters, 188(3/4): 313–328. https://doi.org/10.1016/s0012-821x(01)00330-2

    Article  Google Scholar 

  • Rabinowicz, M., Ricard, Y., Grégoire, M., 2002. Compaction in a Mantle with a very Small Melt Concentration: Implications for the Generation of Carbonatitic and Carbonate-Bearing High Alkaline Mafic Melt Impregnations. Earth and Planetary Science Letters, 203(1): 205–220. https://doi.org/10.1016/s0012-821x(02)00836-1

    Article  Google Scholar 

  • Rabinowicz, M., Vigneresse, J. L., 2004. Melt Segregation under Compaction and Shear Channeling: Application to Granitic Magma Segregation in a Continental Crust. Journal of Geophysical Research: Solid Earth, 109(B4). https://doi.org/10.1029/2002jb002372

    Google Scholar 

  • Rabinowicz, M., Ceuleneer, G., 2005. The Effect of Sloped Isotherms on Melt Migration in the Shallow Mantle: A Physical and Numerical Model Based on Observations in the Oman Ophiolite. Earth and Planetary Science Letters, 229(3/4): 231–246. https://doi.org/10.1016/j.epsl.2004.09.039

    Article  Google Scholar 

  • Rabinowicz, M., Toplis, M. J., 2009. Melt Segregation in the Lower Part of the Partially Molten Mantle Zone beneath an Oceanic Spreading Centre: Numerical Modelling of the Combined Effects of Shear Segregation and Compaction. Journal of Petrology, 50(6): 1071–1106. https://doi.org/10.1093/petrology/egp033

    Article  Google Scholar 

  • Rabinowicz, M., Bystricky, M., Schmocker, M., et al., 2010. Development of Fluid Veins during Deformation of Fluid-Rich Rocks Close to the Brittle-Ductile Transition: Comparison between Experimental and Physical Models. Journal of Petrology, 51(10): 2047–2066. https://doi.org/10.1093/petrology/egq047

    Article  Google Scholar 

  • Rasmussen, P. E., Allmaras, R. R., Rohde, C. R., et al., 1980. Crop Residue Influences on Soil Carbon and Nitrogen in a Wheat-Fallow System1. Soil Science Society of America Journal, 44(3): 596. https://doi.org/10.2136/sssaj1980.03615995004400030033x

    Article  Google Scholar 

  • Räss, L., Yarushina, V. M., Simon, N. S. C., et al., 2014. Chimneys, Channels, Pathway Flow or Water Conducting Features—An Explanation from Numerical Modelling and Implications for CO2 Storage. Energy Procedia, 63: 3761–3774. https://doi.org/10.1016/j.egypro.2014.11.405

    Article  Google Scholar 

  • Rayhani, M. H. T., Yanful, E. K., Fakher, A., 2008. Physical Modeling of Desiccation Cracking in Plastic Soils. Engineering Geology, 97(1/2): 25–31. https://doi.org/10.1016/j.enggeo.2007.11.003

    Article  Google Scholar 

  • Rayhani, M. H., Yanful, E. K., Fakher, A., 2007. Desiccation-Induced Cracking and Its Effect on the Hydraulic Conductivity of Clayey Soils from Iran. Canadian Geotechnical Journal, 44(3): 276–283. https://doi.org/10.1139/t06-125

    Article  Google Scholar 

  • Ribe, N. M., 1985. The Deformation and Compaction of Partial Molten Zones. Geophysical Journal International, 83(2): 487–501. https://doi.org/10.1111/j.1365-246x.1985.tb06499.x

    Article  Google Scholar 

  • Roscoe, R., 1952. The Viscosity of Suspensions of Rigid Spheres. British Journal of Applied Physics, 3(8): 267–269. https://doi.org/10.1088/0508-3443/3/8/306

    Article  Google Scholar 

  • Rutter, E. H., Wanten, P. H., 2000. Experimental Study of the Compaction of Phyllosilicate-Bearing Sand at Elevated Temperature and with Controlled Pore Water Pressure. Journal of Sedimentary Research, 70(1): 107–116. https://doi.org/10.1306/2dc40902-0e47-11d7-8643000102c1865d

    Article  Google Scholar 

  • Rutter, E. H., Arkwright, J. C., Holloway, R. F., et al., 2003. Strains and Displacements in the Mam Tor Landslip, Derbyshire, England. Journal of the Geological Society, 160(5): 735–744. https://doi.org/10.1144/0016-764903-002

    Article  Google Scholar 

  • Rutter, E. H., Green, S., 2011. Quantifying Creep Behaviour of Clay-Bearing Rocks below the Critical Stress State for Rapid Failure: Mam Tor Landslide, Derbyshire, England. Journal of the Geological Society, 168(2): 359–372. https://doi.org/10.1144/0016-76492010-133

    Article  Google Scholar 

  • Schneider, F., Potdevin, J. L., Wolf, S., et al., 1996. Mechanical and Chemical Compaction Model for Sedimentary Basin Simulators. Tectonophysics, 263(1/2/3/4): 307–317. https://doi.org/10.1016/s0040-1951(96)00027-3

    Article  Google Scholar 

  • Schwinka, V., Moertel, H., 1999. Physico-Chemical Properties of Illite Suspensions after Cycles of Freezing and Thawing. Clays and Clay Minerals, 47(6): 718–725. https://doi.org/10.1346/ccmn.1999.0470605

    Article  Google Scholar 

  • Skempton, A. W., 1964. Long-Term Stability of Clay Slopes. Géotechnique, 14(2): 77–102. https://doi.org/10.1680/geot.1964.14.2.77

    Article  Google Scholar 

  • Sergeyev, Y. M., Grabowska-Olszewska, B., Osipov, V. I., et al., 1980. The Classification of Microstructures of Clay Soils. Journal of Microscopy, 120(3): 237–260. https://doi.org/10.1111/j.1365-2818.1980.tb04146.x

    Article  Google Scholar 

  • Ślizowski, J., Lankof, L., 2003. Salt-Mudstones and Rock-Salt Suitabilities for Radioactive-Waste Storage Systems: Rheological Properties. Applied Energy, 75(1/2): 137–144. https://doi.org/10.1016/s0306-2619(03)00026-6 So, B.-D.

    Article  Google Scholar 

  • Yuen, D. A., 2014. Stationary Points in Activation Energy for Heat Dissipated with a Power Law Temperature-Dependent Viscoelastoplastic Rheology. Geophysical Research Letters, 41(14): 4953–4960. https://doi.org/10.1002/2014gl060713

    Article  Google Scholar 

  • Stuevold, L. M., Faerseth, R. B., Arnesen, L., et al., 2003. Polygonal Faults in the Ormen Lange Field, Møre Basin, Offshore Mid Norway. Geological Society, London, Special Publications, 216(1): 263–281. https://doi.org/10.1144/gsl.sp.2003.216.01.17

    Article  Google Scholar 

  • Suetnova, E., Vasseur, G., 2000. 1-D Modelling Rock Compaction in Sedimentary Basins Using a Visco-Elastic Rheology. Earth and Planetary Science Letters, 178(3/4): 373–383. https://doi.org/10.1016/s0012-821x(00)00074-1

    Article  Google Scholar 

  • Sweet, D. E., Soreghan, G. S., 2008. Polygonal Cracking in Coarse Clastics Records Cold Temperatures in the Equatorial Fountain Formation (Pennsylvanian–Permian, Colorado). Palaeogeography, Palaeoclimatology, Palaeoecology, 268(3/4): 193–204. https://doi.org/10.1016/j.palaeo.2008.03.046

    Article  Google Scholar 

  • Sun, Q. L., Wu, S. G., Yao, G. S., et al., 2009. Characteristics and Formation Mechanism of Polygonal Faults in Qiongdongnan Basin, Northern South China Sea. Journal of Earth Science, 20(1): 180–192. https://doi.org/10.1007/s12583-009-0018-z

    Article  Google Scholar 

  • Sun, Q. L., Wu, S. G., Lü, F. L., et al., 2010. Polygonal Faults and Their Implications for Hydrocarbon Reservoirs in the Southern Qiongdongnan Basin, South China Sea. Journal of Asian Earth Sciences, 39(5): 470–479. https://doi.org/10.1016/j.jseaes.2010.04.002

    Article  Google Scholar 

  • Talbot, C. J., Rönnlund, P., Schmeling, H., et al., 1991. Diapiric Spoke Patterns. Tectonophysics, 188(1/2): 187–201. https://doi.org/10.1016/0040-1951(91)90322-j

    Article  Google Scholar 

  • Tang, C.-S., Cui, Y.-J., Tang, A.-M., et al., 2010. Experiment Evidence on the Temperature Dependence of Desiccation Cracking Behavior of Clayey Soils. Engineering Geology, 114(3/4): 261–266. https://doi.org/10.1016/j.enggeo.2010.05.003

    Article  Google Scholar 

  • Tang, C.-S., Shi, B., Liu, C., et al., 2011. Experimental Characterization of Shrinkage and Desiccation Cracking in Thin Clay Layer. Applied Clay Science, 52(1/2): 69–77. https://doi.org/10.1016/j.clay.2011.01.032

    Article  Google Scholar 

  • Tewksbury, B. J., Hogan, J. P., Kattenhorn, S. A., et al., 2014. Polygonal Faults in Chalk: Insights from Extensive Exposures of the Khoman Formation, Western Desert, Egypt: Reply. Geology, 42(6): 479–482. https://doi.org/10.1130/G35362.1

    Article  Google Scholar 

  • Vasseur, G., Djeran-Maigre, I., Grunberger, D., et al., 1995. Evolution of Structural and Physical Parameters of Clays during Experimental Compaction. Marine and Petroleum Geology, 12(8): 941–954. https://doi.org/10.1016/0264-8172(95)98857-2

    Article  Google Scholar 

  • van Olphen, H., 1977. An Introduction to Clay Colloid Chemistry: For Clay Technologists, Geologists, and Soil Scientists. 2nd ed. John Wiley, New York

    Google Scholar 

  • Watterson, J., Walsh, J., Nicol, A., et al., 2000. Geometry and Origin of a Polygonal Fault System. Journal of the Geological Society, 157(1): 151–162. https://doi.org/10.1144/jgs.157.1.151

    Article  Google Scholar 

  • Wei, K. S., Cui, H. Y., Ye, S. F., et al., 2001. High-Precision Sequence Stratigraphy in Qiongdongnan Basin. Earth Science—Journal of China University of Geosciences, 20: 59–66 (in Chinese with English Abstract)

    Google Scholar 

  • Weinberger, R., 1999. Initiation and Growth of Cracks during Desiccation of Stratified Muddy Sediments. Journal of Structural Geology, 21(4): 379–386. https://doi.org/10.1016/s0191-8141(99)00029-2

    Article  Google Scholar 

  • Wiggins, C., Spiegelman, M., 1995. Magma Migration and Magmatic Solitary Waves in 3-D. Geophysical Research Letters, 22(10): 1289–1292. https://doi.org/10.1029/95gl00269

    Article  Google Scholar 

  • Yarushina, V. M., Podladchikov, Y. Y., 2015. (De)compaction of Porous Viscoelastoplastic Media: Model Formulation. Journal of Geophysical Research: Solid Earth, 120(6): 4146–4170. https://doi.org/10.1002/2014jb011258

    Google Scholar 

Download references

Acknowledgments

This research has benefited from the support by the French Space Agency CNES, PNP (Programme National de Planétologie) and TOSCA (Terre, Océan, Surfaces continentales, Atmosphère). It has also benefited from the support of Commis sariat Général au Développement Durable (CGDD) from the French Ministry of Environment, as part of the CEREMA internal research project HYDROGEO. We thank two anonymous reviewers for their constructive criticisms which significantly improved the paper. We also want to thank David A. Yuen for his support and scientific discussions. The final publication is available at Springer via https://doi.org/10.1007/s12583-017-0814-9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teodolina Lopez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopez, T., Antoine, R., Darrozes, J. et al. Development and Evolution of the Size of Polygonal Fracture Systems during Fluid-Solid Separation in Clay-Rich Deposits. J. Earth Sci. 29, 1319–1334 (2018). https://doi.org/10.1007/s12583-017-0814-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-017-0814-9

Key words

Navigation