Advertisement

Journal of Earth Science

, Volume 29, Issue 1, pp 114–129 | Cite as

Origin and Geodynamic Implications of Concealed Granite in Shadong Tungsten Deposit, Xinjiang, China: Zircon U-Pb Chronology, Geochemistry, and Sr-Nd-Hf Isotope Constraint

  • Chao Chen
  • Xinbiao Lü
  • Chunming Wu
  • Xiao Jiang
  • Chen Mao
Mineralogy and Petrogeochemistry

Abstract

Shadong deposit is the first large-scale tungsten deposit found in the East Tianshan orogenic belt, and the geologic characteristics of the deposit indicate that the deeply concealed granite body is genetically related with the mineralization. The LA-ICPMS U-Pb age of zircons from the Shadong concealed granite obtained in this research is 239±2.0 Ma, belonging to the Middle Triassic. The whole rock samples are metaluminous to slightly peraluminous (A/CNK=0.95–1.02) with low contents of SiO2 (64.0 wt.%–68.5 wt.%) and low K2O/Na2O ratios (0.73–0.96). The samples reveal enrichment of K, Rb, Th and depletion of Nb, Ta, P, Ti and have a negative slope from La to Lu (LaN/YbN=16.29–36.8) with weak negative Eu anomaly (Eu/Eu*= 0.71–0.82). Initial 87Sr/86Sr ratios of whole rock range of 0.706 59–0.707 75, εNd(t) values range from -1.77 to -2.53 and εHf(t) values of zircon are between 2.54 and 4.90. The lithogeochemistry and Sr-Nd-Hf isotopic characteristics revealed that the concealed granite in Shadong tungsten deposit is I-type granite, and occurs in an intraplate tectonic setting. The magma mixing during intraplating of mantle derived magma intruding into the crust in Indosinian Period is the major formation mechanism of the granite. Of which, the proportion of mantle derived magma ranges from 58% to 60%, and the crustal materials are mainly the metamorphic basement of Xingxingxia Group of Mesoproterozoic Changcheng System, which may provide the main source of ore forming metals of Shadong tungsten deposit.

Key words

East Tianshan Shadong tungsten deposit zircon U-Pb chronology lithogeochemistry Sr-Nd-Hf isotope 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This study was financially supported by the National Key Technology Research and Development Program of China (No. 2011BAB06B04). We appreciate the engineers of Shadong deposit for their help and fruitful discussion during our field investigations. Comments and suggestions from reviewers and editors greatly improved the quality of the paper. The final publication is available at Springer via https://doi.org/10.1007/s12583-017-0808-7.

References Cited

  1. Albarède, F., 1998. The Growth of Continental Crust. Tectonophysics, 296(1/2): 1–14. https://doi.org/10.1016/s0040-1951(98)00133-4CrossRefGoogle Scholar
  2. Batchelor, R. A., Bowden, P., 1985. Petrogenetic Interpretation of Granitoid Rock Series Using Multicationic Parameters. Chemical Geology, 48(1/2/3/4): 43–55. https://doi.org/10.1016/0009-2541(85)90034-8CrossRefGoogle Scholar
  3. Broska, I., Williams, C. T., Uher, P., et al., 2004. The Geochemistry of Phosphorus in Different Granite Suites of the Western Carpathians, Slovakia: The Role of Apatite and P-Bearing Feldspar. Chemical Geology, 205(1/2): 1–15. https://doi.org/10.1016/j.chemgeo.2003.09.004CrossRefGoogle Scholar
  4. Castillo, P. R., 2006. An Overview of Adakite Petrogenesis. Chinese Science Bulletin, 51(3): 257–268. https://doi.org/10.1007/s11434-006-0257-7CrossRefGoogle Scholar
  5. Chappell, B. W., 1999. Aluminium Saturation in I-and S-Type Granites and the Characterization of Fractionated Haplogranites. Lithos, 46(3): 535–551. https://doi.org/10.1016/s0024-4937(98)00086-3CrossRefGoogle Scholar
  6. Chappell, B. W., White, J. R., 1992. I-and S-type Granites in the Lachlan Fold Belt. Transactions of the Royal Society of Edinburgh: Earth Sciences, 83(1/2): 1–26. https://doi.org/10.1017/S0263593300007720Google Scholar
  7. Chen, C., 2013. Tungsten Mineralization Study of East Tianshan-Beishan Area: [Dissertation]. China University of Geosciences, Wuhan. 170 (in Chinese with English Abstract)Google Scholar
  8. Chen, C., Lü, X. B., Cao, X. F., et al., 2013. Geochronology, Geochemistry and Geological Significance of Late Carboniferous–Early Permian Granites in Kumishi Area, Xinjiang. Earth Science—Journal of China University of Geosciences, 38: 218–232 (in Chinese with English Abstract)Google Scholar
  9. Collins, W. J., 1982. Nature and Origin of A Type Granites with Paticular Reference to Southeastern Australia. Contributions to Mineralogy and Petrology, 80: 189–200. https://doi.org/10.1007/BF00374895CrossRefGoogle Scholar
  10. Condie, K. C., 1998. Episodic Continental Growth and Supercontinents: A Mantle Avalanche Connection?. Earth and Planetary Science Letters, 163(1/2/3/4): 97–108. https://doi.org/10.1016/s0012-821x(98)00178-2CrossRefGoogle Scholar
  11. Cunningham, D., Owen, L., Snee, L., et al., 2003. Structural Framework of a Major Intracontinental Orogenic Termination Zone: The Easternmost Tien Shan, China. Journal of the Geological Society, 160(4): 575–590. https://doi.org/10.1144/0016-764902-122CrossRefGoogle Scholar
  12. Deng, X. H., Chen, Y. J., Santosh, M., et al., 2017. U-Pb Zircon, Re-Os Molybdenite Geochronology and Rb-Sr Geochemistry from the Xiaobaishitou W (-Mo) Deposit: Implications for Triassic Tectonic Setting in Eastern Tianshan, NW China. Ore Geology Reviews, 80: 332–351. https://doi.org/10.13039/501100001809CrossRefGoogle Scholar
  13. DePaolo, D. J., Perry, F. V., Baldridge, W. S., 1992. Crustal versus Mantle Sources of Granitic Magmas: A Two-Parameter Model Based on Nd Isotopic Studies. Transactions of the Royal Society of Edinburgh: Earth Sciences, 83(1/2): 439–446. https://doi.org/10.1017/s0263593300008117CrossRefGoogle Scholar
  14. Dong, Y. P., Zhang, G. W., Neubauer, F., et al., 2011. Syn-and Post-Collisional Granitoids in the Central Tianshan Orogen: Geochemistry, Geochronology and Implications for Tectonic Evolution. Gondwana Research, 20(2/3): 568–581. https://doi.org/10.1016/j.gr.2011.01.013CrossRefGoogle Scholar
  15. Drummond, M. S., Defant, M. J., 1990. A Model for Trondhjemite-Tonalite Dacite Genesis and Crustal Growth via Slab Melting: Archean to Modern Comparisons. Journal of Geophysical Research, 95(B13): 21503–21521. https://doi.org/10.1029/jb095ib13p21503CrossRefGoogle Scholar
  16. Foley, S., Tiepolo, M., Vannucci, R., 2002. Growth of Early Continental Crust Controlled by Melting of Amphibolite in Subduction Zones. Nature, 417(6891): 837–840. https://doi.org/10.1038/nature00799CrossRefGoogle Scholar
  17. Frost, B. R., Barnes, C. G., Collins, W. J., et al., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11): 2033–2048. https://doi.org/10.1093/petrology/42.11.2033CrossRefGoogle Scholar
  18. Gao, Q. L., Chen, Z. Q., Zhang, N., et al., 2015. Ages, Trace Elements and Hf-Isotopic Compositions of Zircons from Claystones around the Permian-Triassic Boundary in the Zunyi Section, South China: Implications for Nature and Tectonic Setting of the Volcanism. Journal of Earth Science, 26(6): 872–882. https://doi.org/10.1007/s12583-015-0589-9CrossRefGoogle Scholar
  19. Gu, L. X., Zhang, Z. Z., Wu, C. Z., et al., 2006. Some Problems on Granites and Vertical Growth of the Continental Crust in the Eastern Tianshan Mountains. NW China. Acta Petrologica Sinica, 22: 1103–1120 (in Chinese with English Abstract)Google Scholar
  20. Guo, Z. J., Shi, H. Y., Zhang, Z. C., et al., 2006. The Tectonic Evolution of the South Tianshan Paleo-Oceanic Crust Inferred from the Spreading Structures and Ar-Ar Dating of the Hongliuhe Ophiolite, NW China. Acta Petrologica Sinica, 22: 95–102 (in Chinese with English Abstract)Google Scholar
  21. Han, B. F., He, G. Q., Wang, S. G., 1999. Postcollisional Mantle-Derived Magmatism, Underplating and Implications for Basement of the Junggar Basin. Science in China Series D: Earth Sciences, 42(2): 113–119. https://doi.org/10.1007/bf02878509CrossRefGoogle Scholar
  22. He, Z. Y., Zhang, Z. M., Zong, K. Q., et al., 2014. Zircon U-Pb and Hf Isotopic Studies of the Xingxingxia Complex from Eastern Tianshan (NW China): Significance to the Reconstruction and Tectonics of the Southern Central Asian Orogenic Belt. Lithos, 190/191: 485–499. https://doi.org/10.1016/j.lithos.2013.12.023CrossRefGoogle Scholar
  23. Hidaka, H., Shimizu, H., Adachi, M., 2002. U-Pb Geochronology and REE Geochemistry of Zircons from Palaeoproterozoic Paragneiss Clasts in the Mesozoic Kamiaso Conglomerate, Central Japan: Evidence for an Archean Provenance. Chemical Geology, 187(3/4): 279–293. https://doi.org/10.1016/s0009-2541(02)00058-xCrossRefGoogle Scholar
  24. Hong, D. W., Zhang, J. S., Wang, T., et al., 2004. Continental Crustal Growth and the Supercontinental Cycle: Evidence from the Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 23(5): 799–813. https://doi.org/10.1016/s1367-9120(03)00134-2CrossRefGoogle Scholar
  25. Hu, A. Q., Jahn, B. M., Zhang, G. X., et al., 2000. Crustal Evolution and Phanerozoic Crustal Growth in Northern Xinjiang: Nd Isotopic Evidence. Part I. Isotopic Characterization of Basement Rocks. Tectonophysics, 328(1/2): 15–51. https://doi.org/10.1016/s0040-1951(00)00176-1Google Scholar
  26. Hu, A. Q., Zhang, G. X., Chen, Y. B., 2006. Isotope Geochronology and Geochemistry for Major Geological Events of Continental Crustal Evolution of Xinjiang, China. Geological Publishing House, Beijing. 421 (in Chinese)Google Scholar
  27. Hu, S. Q., Zhu, Q., Zhang, X. J., et al., 2013. Geochronology, Geochemistry and Zircon Hf Isotope of Granite Porphyry in Yuanzhuding Cu-Mo Deposit, Guangdong Province. Mineral Deposites, 32: 1139–1158 (in Chinese with English Abstract)Google Scholar
  28. Hu, Z. C., Liu, Y. S., Gao, S., et al., 2012. Improved in Situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27(9): 1391–1399. https://doi.org/10.1039/c2ja30078hCrossRefGoogle Scholar
  29. Jahn, B. M., Windley, B., Natal’in, B., et al., 2004. Phanerozoic Continental Growth in Central Asia. Journal of Asian Earth Sciences, 23(5): 599–603. https://doi.org/10.1016/s1367-9120(03)00124-xCrossRefGoogle Scholar
  30. Jahn, B. M., Wu, F. Y., Hong, D. W., 2000a. Important Crustal Growth in the Phanerozoic: Isotopic Evidence of Granitoids from East-Central Asia. Journal of Earth System Science, 109(1): 5–20. https://doi.org/10.1007/bf02719146CrossRefGoogle Scholar
  31. Jahn, B. M., Wu, F. Y., Chen, B., 2000b. Masssive Granitoid Generation in Central Asia: Nd Isotopic Evidence and Implication for Continental Growth in the Phanerozoic. Episodes, 23: 82–92Google Scholar
  32. Jiang, S. H., Nie, F. J., 2006. 40Ar-39Ar Geochronology of Hongjianbingshan Tungsten Deposit in Beishan Mountain, Gansu Province, China. Mineral Deposits, 25: 89–94 (in Chinese with English Abstract)Google Scholar
  33. Jiang, X., Guo, Y. M., Yang, L. Z., et al., 2012. Geological Characteristics and Preliminary Origin of Shadong Large Tungsten Deposit in Hami, Xinjiang. Xinjiang Geology, 30: 31–35 (in Chinese with English Abstract)Google Scholar
  34. Keay, S., Collins, W. J., McCulloch, M. T., 1997. A Three-Component Sr-Nd Isotopic Mixing Model for Granitoid Genesis, Lachlan Fold Belt, Eastern Australia. Geology, 25(4): 307–310. https://doi.org/10.1130/0091-7613(1997)025<0307:atcsni>2.3.co;2CrossRefGoogle Scholar
  35. Klemd, R., John, T., Scherer, E. E., et al., 2011. Changes in Dip of Subducted Slabs at Depth: Petrological and Geochronological Evidence from HP-UHP Rocks (Tianshan, NW-China). Earth and Planetary Science Letters, 310(1/2): 9–20. https://doi.org/10.1016/j.epsl.2011.07.022CrossRefGoogle Scholar
  36. Kovalenko, V. I., Yarmolyuk, V. V., Kovach, V. P., et al., 2004. Isotope Provinces, Mechanisms of Generation and Sources of the Continental Crust in the Central Asian Mobile Belt: Geological and Isotopic Evidence. Journal of Asian Earth Sciences, 23(5): 605–627. https://doi.org/10.1016/s1367-9120(03)00130-5CrossRefGoogle Scholar
  37. Li, C. N., 1992. Trace Elements Petrology of Igneous Rock. China University of Geosciences Publishing, Wuhan. 195 (in Chinese)Google Scholar
  38. Li, D. P., Du, Y. S., Pang, Z. S., et al., 2013. Zircon U-Pb Chronology and Geochemistry of Carboniferous Volcanic Rocks in Awulale Area, Western Tianshan Mountains. Acta Geoscientia Sinica, 34: 176–192 (in Chinese with English Abstract)Google Scholar
  39. Li, H. Q., Chen, F. W., Lu, Y. F., et al., 2005. New Chronological Evidence for Indosinian Diagenetic Mineralization in Eastern Xinjiang, NW China. Acta Geologica Sinica—English Edition, 79(2): 264–275. https://doi.org/10.1111/j.1755-6724.2005.tb00888.xCrossRefGoogle Scholar
  40. Li, W. P., Wang, T., Li, J. B., et al., et al., 2001. Geochemical Characteristics and Tectonic Setting of the Late Paleozoic Granites from the Hongliuhe Area, Eastern Tianshan. Geological Review, 47: 368–376 (in Chinese with English Abstract)Google Scholar
  41. Li, X. H., Li, Z. X., Li, W. X., et al., 2007. U-Pb Zircon, Geochemical and Sr-Nd-Hf Isotopic Constraints on Age and Origin of Jurassic I-and A-Type Granites from Central Guangdong, SE China: A Major Igneous Event in Response to Foundering of a Subducted Flat-Slab?. Lithos, 96(1/2): 186–204. https://doi.org/10.1016/j.lithos.2006.09.018CrossRefGoogle Scholar
  42. Li, X. H., Long, W. G., Li, Q. L., et al., 2010. Penglai Zircon Megacrysts: A Potential New Working Reference Material for Microbeam Determination of Hf-O Isotopes and U-Pb Age. Geostandards and Geoanalytical Research, 34(2): 117–134. https://doi.org/10.1111/j.1751-908X.2010.00036.xCrossRefGoogle Scholar
  43. Liu, W., Liu, X. J., Xiao, W. J., 2012. Massive Granitoid Production without Massive Continental-Crust Growth in the Chinese Altay: Insight into the Source Rock of Granitoids Using Integrated Zircon U-Pb Age, Hf-Nd-Sr Isotopes and Geochemistry. American Journal of Science, 312(6): 629–684. https://doi.org/10.2475/06.2012.02CrossRefGoogle Scholar
  44. Liu, Y. J., Ma, D. S., 1987. Geochemistry of Tungsten. Science Press, Beijing. 232 (in Chinese)Google Scholar
  45. Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34–43. https://doi.org/10.1016/j.chemgeo.2008.08.004CrossRefGoogle Scholar
  46. Liu, Y. S., Hu, Z. C., Zong, K. Q., et al., 2010. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535–1546. https://doi.org/10.1007/s11434-010-3052-4CrossRefGoogle Scholar
  47. Lü, X. B., Zhu, J., Cao, X. F., et al., 2012. Magmatism and Its Metallogenetic Effects during the Paleozoic–Triassic Continental Crustal Construction in the Liuyuan Area, South Beishan, NW China. Geological Science and Technology Information, 31: 119–127 (in Chinese with English Abstract)Google Scholar
  48. Mao, Q. G., Xiao, W. J., Han, C. M., et al., 2010. Discovery of Middle Silurian Adaltite Granite and Its Tectonic Significance in Liuyuan Area, Beishan Moutains, NW China. Acta Petrologica Sinica, 26: 584–596 (in Chinese with English Abstract)Google Scholar
  49. Murphy, J. B., Nance, R. D., 2002. Sm-Nd Isotopic Systematics as Tectonic Tracers: An Example from West Avalonia in the Canadian Appalachians. Earth-Science Reviews, 59(1–4): 77–100. https://doi.org/10.1016/s0012-8252(02)00070-3CrossRefGoogle Scholar
  50. Nie, F. J., Jiang, S. H., Hu, P., et al., 2004. Geological Features and Ore-Forming Material Sources of Hongjianbingshan Tungsten Deposit in Beishan Mountain, Gansu Province. Mineral Deposits, 23: 11–19 (in Chinese with English Abstract)Google Scholar
  51. Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63–81. https://doi.org/10.1007/bf00384745CrossRefGoogle Scholar
  52. Petford, N., Cmden, A. R., McCaffrey, K. J. W., et al., 2000. Granite Magma Formation, Transport and Emplacement in the Earth’s Crust. Nature, 408: 669–673. https://doi.org/10.1038/35047000CrossRefGoogle Scholar
  53. Rickwood, P. C., 1989. Boundary Lines within Petrologic Diagrams which Use Oxides of Major and Minor Elements. Lithos, 22(4): 247–263. https://doi.org/10.1016/0024-4937(89)90028-5CrossRefGoogle Scholar
  54. Rollinson, H. R., 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman, London. 351Google Scholar
  55. Ryerson, F. J., Watson, E. B., 1987. Rutile Saturation in Magmas: Implications for Ti-Nb-Ta Depletion in Island-Arc Basalts. Earth and Planetary Science Letters, 86(2/3/4): 225–239. https://doi.org/10.1016/0012-821x(87)90223-8CrossRefGoogle Scholar
  56. Schmidt, M. W., 1992. Amphibole Composition in Tonalite as a Function of Pressure: An Experimental Calibration of the Al-in-Hornblende Barometer. Contributions to Mineralogy and Petrology, 110(2/3): 304–310. https://doi.org/10.1007/bf00310745CrossRefGoogle Scholar
  57. Sengör, A. M. C., Natal’in, B. A., 1996. Paleotectonics of Asia: Fragments of Synthesis. In: Yin, A., Harrison, M., eds., The Tectonic Evolution of Asia. Cambridge University Press, Cambridge. 480–640Google Scholar
  58. Stepanov, A. S., Hermann, J., 2013. Fractionation of Nb and Ta by Biotite and Phengite: Implications for the “Missing Nb Paradox”. Geology, 41(3): 303–306. https://doi.org/10.1130/g33781.1CrossRefGoogle Scholar
  59. Su, B. X., Qin, K. Z., Sakyi, P. A., et al., 2012. Occurrence of an Alaskan-Type Complex in the Middle Tianshan Massif, Central Asian Orogenic Belt: Inferences from Petrological and Mineralogical Studies. International Geology Review, 54(3): 249–269. https://doi.org/10.1080/00206814.2010.543009CrossRefGoogle Scholar
  60. Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313–345. https://doi.org/10.1144/gsl.sp.1989.042.01.19CrossRefGoogle Scholar
  61. Tang, G. J., Wang, Q., Wyman, D. A., et al., 2013. Petrogenesis of Gold-Mineralized Magmatic Rocks of the Taerbieke Area, Northwestern Tianshan (Western China): Constraints from Geochronology, Geochemistry and Sr-Nd-Pb-Hf Isotopic Compositions. Journal of Asian Earth Sciences, 74: 113–128. https://doi.org/10.1016/j.jseaes.2013.03.022CrossRefGoogle Scholar
  62. Tang, J. L., 2015. Geological, Geochemical Characteristics and Genesis of Shadong Tungsten Deposit, Hami, Xinjiang: [Dissertation]. Xinjiang University, Urumchi. 56 (in Chinese with English Abstract)Google Scholar
  63. Visonà, D., Lombardo, B., 2002. Two-Mica and Tourmaline Leucogranites from the Everest-Makalu Region (Nepal-Tibet). Himalayan Leucogranite Genesis by Isobaric Heating?. Lithos, 62(3/4): 125–150. https://doi.org/10.1016/s0024-4937(02)00112-3Google Scholar
  64. Wang, J. H., 2005. Study on Geological Conditions of Ore Forming and Directions of Ore Prospecting of Tungsten Ore Deposits in the Western Qilian Mountains: [Dissertation]. Chang’an University, Xi’an. 57 (in Chinese with English Abstract)Google Scholar
  65. Wang, S., Ye, H. S., Yang, Y. Q., 2016. Zircon U-Pb Chronology, Geochemistry and Hf Isotopic Compositions of the Huoshenmiao Pluton, Western Henan. Earth Science—Journal of China University of Geosciences, 41(2): 293–316 (in Chinese with English Abstract)CrossRefGoogle Scholar
  66. Wang, T., Hong, D. W., Tong, Y., et al., 2005. Zircon U-Pb SHRIMP Age and on Origin of Post-Orogenic Lamazhao Granitic Pluton from Altai Orogen: Its Implications for Vertical Continental Growth. Acta Petrologica Sinica, 21: 640–650 (in Chinese with English Abstract)Google Scholar
  67. Wang, T., Li, W. P., Li, J. B., et al., 2008. Increase of Juvenal Mantle-Derived Composition from Syn-Orogenic to Post-Orogenic Granites of East Part of the Eastern Tianshan (China) and Implications for Continental Vertical Growth: Sr and Nd Isotopic Evidence. Acta Petrologica Sinica, 24: 762–772 (in Chinese with English Abstract)Google Scholar
  68. Wang, Y. H., Xue, C. J., Liu, J. J., et al., 2016. Geological, Geochronological, Geochemical, and Sr-Nd-O-Hf Isotopic Constraints on Origins of Intrusions Associated with the Baishan Porphyry Mo Deposit in Eastern Tianshan, NW China. Mineralium Deposita, 51(7): 953–969. https://doi.org/10.1007/s00126-016-0646-zCrossRefGoogle Scholar
  69. Wang, Y. H., Zhao, C. B., Zhang, F. F., et al., 2015. SIMS Zircon U-Pb and Molybdenite Re-Os Geochronology, Hf Isotope, and Whole-Rock Geochemistry of the Wunugetushan Porphyry Cu-Mo Deposit and Granitoids in NE China and Their Geological Significance. Gondwana Research, 28(3): 1228–1245. https://doi.org/10.13039/501100003407CrossRefGoogle Scholar
  70. Wang, Y. J., Yuan, C., Long, X. P., et al., 2011. Geochemistry, Zircon U-Pb Ages and Hf Isotopes of the Paleozoic Volcanic Rocks in the Northwestern Chinese Altai: Petrogenesis and Tectonic Implications. Journal of Asian Earth Sciences, 42(5): 969–985. https://doi.org/10.1016/j.jseaes.2010.11.005CrossRefGoogle Scholar
  71. Wei, S. L., Jia, B. H., Zeng, Q. W., 2006. Metallogenic Mechanism of Tungsten Deposit in Nanling Area. Resource Surve & nvironment, 27: 103–109 (in Chinese with English Abstract)Google Scholar
  72. Whitehouse, M. J., 2003. Rare Earth Elements in Zircon: A Review of Applications and Case Studies from the Outer Hebridean Lewisian Complex, NW Scotland. Geological Society, London, Special Publications, 220(1): 49–64. https://doi.org/10.1144/gsl.sp.2003.220.01.03CrossRefGoogle Scholar
  73. Wickham, S. M., Litvinovsky, B. A., Zanvilevich, A. N., et al., 1995. Geochemical Evolution of Phanerozoic Magmatism in Transbaikalia, East Asia: A Key Constraint on the Origin of K-Rich Silicic Magmas and the Process of Cratonization. Journal of Geophysical Research: Solid Earth, 100(B8): 15641–15654. https://doi.org/10.1029/95jb00035CrossRefGoogle Scholar
  74. Wiedenbeck, M., Allé, P., Corfu, F., et al., 1995. Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and REE Analyses. Geostandards and Geoanalytical Research, 19(1): 1–23. https://doi.org/10.1111/j.1751-908x.1995.tb00147.xCrossRefGoogle Scholar
  75. Wu, F. Y., Jahn, B. M., Wilde, S., et al., 2003. Highly Fractionated I-Type Granites in NE China (I): Geochronology and Petrogenesis. Lithos, 66(3/4): 241–273. https://doi.org/10.1016/s0024-4937(02)00222-0CrossRefGoogle Scholar
  76. Wu, F. Y., Jahn, B. M., Wilde, S., et al., 2000. Phanerozoic Crustal Growth: U-Pb and Sr-Nd Isotopic Evidence from the Granites in Northeastern China. Tectonophysics, 328(1/2): 89–113. https://doi.org/10.1016/s0040-1951(00)00179-7CrossRefGoogle Scholar
  77. Wu, Y. S., Xiang, N., Tang, H. S., et al., 2013. Molybdenite Re-Os Isotope Age of the Donggebi Mo Deposit and the Indosinian Metallogenic Event in Eastern Tianshan. Acta Petrologica Sinica, 29: 121–130 (in Chinese with English Abstract)Google Scholar
  78. Wu, Y. S., Zhou, K. F., Li, N., et al., 2017. Zircon U-Pb Dating and Sr-Nd-Pb-Hf Isotopes of the Ore-Associated Porphyry at the Giant Donggebi Mo Deposit, Eastern Tianshan, NW China. Ore Geology Reviews, 81: 794–807. https://doi.org/10.13039/501100001809CrossRefGoogle Scholar
  79. Xi, B. B., Zhang, D. H., Zhou, L. M., 2007. Magmatic Evolutions of Several Granite Plutons Related to Sn(W) Mineralizations in the Nanling Region, China. Geological Bulletin of China, 26: 1591–1599 (in Chinese with English Abstract)Google Scholar
  80. Xing, X. W., Wang, Y. J., Zhang, Y. Z., 2016. Detrital Zircon U-Pb Geochronology and Lu-Hf Isotopic Compositions of the Wuliangshan Metasediment Rocks in SW Yunnan (China) and Its Provenance Implications. Journal of Earth Science, 27(3): 412–424. https://doi.org/10.1007/s12583-015-0647-3CrossRefGoogle Scholar
  81. Xiong, F. H., Ma, C. Q., Jiang, H. A., et al., 2016. Geochronology and Petrogenesis of Triassic High-K Calc-Alkaline Granodiorites in the East Kunlun Orogen, West China: Juvenile Lower Crustal Melting during Post-Collisional Extension. Journal of Earth Science, 27(3): 474–490. https://doi.org/10.1007/s12583-016-0674-6CrossRefGoogle Scholar
  82. Xiong, X. L., Adam, J., Green, T. H., 2005. Rutile Stability and Rutile/Melt HFSE Partitioning during Partial Melting of Hydrous Basalt: Implications for TTG Genesis. Chemical Geology, 218(3/4): 339–359. https://doi.org/10.1016/j.chemgeo.2005.01.014CrossRefGoogle Scholar
  83. Zhai, W., Sun, X. M., Wu, Y. S., et al., 2012. He-Ar Isotope Geochemistry of the Yaoling-Meiziwo Tungsten Deposit, North Guangdong Province: Constraints on Yanshanian Crust-Mantle Interaction and Metallogenesis in SE China. Chinese Science Bulletin, 57(10): 1150–1159. https://doi.org/10.1007/s11434-011-4952-7CrossRefGoogle Scholar
  84. Zhang, Z. Z., 2005. From the Underplating to Intraplating: Vertical Accretion of Continental Crust and Granites in the East Section of Mid-Tianshan Block: [Dissertation]. Nanjing University, Nanjing. 135 (in Chinese with English Abstract)Google Scholar
  85. Zhang, H. F., Gao, S., Zhong, Z. Q., et al., 2002. Geochemical and Sr-Nd-Pb Isotopic Compositions of Cretaceous Granitoids: Constraints on Tectonic Framework and Crustal Structure of the Dabieshan Ultrahigh-Pressure Metamorphic Belt, China. Chemical Geology, 186(3/4): 281–299. https://doi.org/10.1016/s0009-2541(02)00006-2CrossRefGoogle Scholar
  86. Zhang, Q., Jin, W. J., Li, C. D., et al., 2010. Revisiting the New Classification of Granitic Rocks Based on Whole-Rock Sr and Yb Contents: Index. Acta Petrologica Sinica, 26: 985–1015 (in Chinese with English Abstract)Google Scholar
  87. Zhang, Q., Jin, W. J., Li, C. D., et al., 2011. Granitic Rocks and Their Formation Depth in the Crust. Geotectonica et Metallogenia, 211: 259–269 (in Chinese with English Abstract)Google Scholar
  88. Zhang, W., Zhou, H. W., Zhu, Y. H., 2016. The Evolution of Triassic Granites Associated with Mineralization within East Kunlun Orogenic Belt: Evidence from the Petrology, Geochemistry and Zircon U-Pb Geochronology of the Mohexiala Pluton. Earth Science—Journal of China University of Geosciences, 41(8): 1334–1348 (in Chinese with English Abstract)CrossRefGoogle Scholar
  89. Zhang, Z. Z., Gu, L. X., Wu, C. Z., et al., 2005. Zircon SHRIMP Dating for the Weiya Pluton, Eastern Tianshan: Its Geological Implications. Acta Geologica Sinica—English Edition, 79(4): 481–490. https://doi.org/10.1111/j.1755-6724.2005.tb00914.xCrossRefGoogle Scholar
  90. Zhao, H. X., Jiang, S. Y., Dai, B. Z., et al., 2015. Geochronology and Hf Isotope Study of Pegmatite in the Xiaoqinling Area of NW China: Implication for Petrogenesis and Regional Metamorphism. Journal of Earth Science, 26(3): 295–305. https://doi.org/10.1007/s12583-015-0537-8CrossRefGoogle Scholar
  91. Zhou, Z. M., Ma, C. Q., Xie, C. F., et al., 2016. Genesis of Highly Fractionated I-Type Granites from Fengshun Complex: Implications to Tectonic Evolutions of South China. Journal of Earth Science, 27(3): 444–460. https://doi.org/10.1007/s12583-016-0677-3CrossRefGoogle Scholar

Copyright information

© China University of Geosciences and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Institute of Geological SurveyChina University of GeosciencesWuhanChina
  2. 2.Faculty of Earth ResourcesChina University of GeosciencesWuhanChina
  3. 3.No. 6 Geological Survey TeamBureau of Xinjiang Geological ExplorationHamiChina

Personalised recommendations