On the Fluid Dependence of Seismic Anisotropy: Beyond Biot-Gassmann



This work addresses the question of the fluid dependence of the non-dimensional parameters of seismic anisotropy. It extends the classic theory of the fluid-dependence of elasticity, and applies the approximation of weak seismic anisotropy. The analysis shows that reliance upon the classic theory leads to oversimplified conclusions. Extending the classic theory introduces new parameters (which must be experimentally determined) into the conclusions, making their application in the field context highly problematic.


Biot Gassmann incompressibility fluids fluid substitution pore compressibility 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



I appreciate many tough discussions with J. Berryman (LBNL), and B. Gurevich (Curtin), and a tough review by I. Tsvankin (CSM) of a different manuscript. The final publication is available at Springer via https://doi.org/10.1007/s12583-017-0806-9.


  1. Backus, G. E., 1962. Long-Wave Elastic Anisotropy Produced by Horizontal Layering. Journal of Geophysical Research, 67(11): 4427–4440. https://doi.org/10.1029/jz067i011p04427CrossRefGoogle Scholar
  2. Biot, M. A., 1941. General Theory of Three-Dimensional Consolidation. Journal of Applied Physics, 12(2): 155–164. https://doi.org/10.1063/1.1712886CrossRefGoogle Scholar
  3. Brown, R. J. S., Korringa, J., 1975. On the Dependence of the Elastic Properties of a Porous Rock on the Compressibility of the Pore Fluid. Geophysics, 40(4): 608–616. https://doi.org/10.1190/1.1440551CrossRefGoogle Scholar
  4. Collet, O., Gurevich, B., 2013. Fluid Dependence of Anisotropy Parameters in Weakly Anisotropic Porous Media. Geophysics, 78(5): WC137–WC145. https://doi.org/10.1190/geo2012-0499.1CrossRefGoogle Scholar
  5. Gassmann, F., 1951. Űber die Elastizität Poroser Medien, Mitteilungen Inst. Geophysik (Zurich), 17: l–23. Translated and Reprinted as: On elasticity of Porous Media, in Classics of Elastic Wave Theory. Pelissier, M. A., ed., Soc. Expl. Geoph., TulsaGoogle Scholar
  6. Hart, D. J., Wang, H. F., 2010. Variation of Unjacketed Pore Compressibility Using Gassmann’s Equation and an Overdetermined Set of Volumetric Poroelastic Measurements. Geophysics, 75(1): N9–N18. https://doi.org/10.1190/1.3277664CrossRefGoogle Scholar
  7. Thomsen, L., 1986. Weak Elastic Anisotropy. Geophysics, 51(10): 1954–1966. https://doi.org/10.1190/1.1442051CrossRefGoogle Scholar
  8. Thomsen, L., 2010. On the Fluid Dependence of Rock Compressibility: Biot-Gassmann Refined. Soc. Expl. Geoph. Conv. Expnd. Absts., 80: 2447–2451Google Scholar
  9. Thomsen, L., 2012. On the Fluid Dependence of the Parameters of Anisotropy. Soc. Expl. Geoph. Conv. Expnd. Absts., 82, https://doi.org/10.1190/segam2012-0393.1Google Scholar
  10. Thomsen, L., 2017. On the Fluid Dependence of Rock Compressibility: A Reconsideration, submitted to GEOPHYSICS, 2017.Google Scholar
  11. Tsvankin, I., Grechka, V., 2011. Seismology of Azimuthally Anisotropic Media and Seismic Fracture Characterization. Soc. Expl. Geoph., Tulsa. ISBN:978-1560802280CrossRefGoogle Scholar

Copyright information

© China University of Geosciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of HoustonDelta GeophysicsHouston, TexasUSA

Personalised recommendations