Advertisement

Journal of Earth Science

, Volume 29, Issue 1, pp 30–42 | Cite as

Zircon Geochronological Evidence for Participation of the North China Craton in the Protolith of Migmatite of the North Dabie Terrane

  • Haijin Xu
  • Junfeng Zhang
Mineralogy and Petrogeochemistry

Abstract

The plate affiliation of the North Dabie terrane (NDT) has been controversial. To address this fundamental question, an integrated study of internal structure, in-situ U-Pb dating and trace element analysis in zircons and field investigation for migmatite in the NDT was carried out, which reveals participation of crustal rocks of the North China craton (NCC) in the protolith in addition to the more common crustal rocks of the Yangtze craton (YC). The evidence of an NCC affinity for protolith of migmatite in the NDT is the ∼2.5 Ga (2 486±14 and 2 406±26 Ma) magamtic age and ∼1.8 Ga (1 717±79 Ma) metamorphic age in the relict zircon domains because these two age groups are characteristic for the evolution of the NCC. The evidence of a YC affinity for protolith of migmatite in the NDT is the more common 0.7–0.8 Ga (e.g., 787±12 Ma) magamtic zircon age. Mid-Neoproterozoic magmatic age (0.7–0.8 Ga) is a symbol of YC basement rocks. In view of the widely exposed YC crustal components in the NDT, we suggest that the protolith of the NDT is mainly crustal rocks from the YC with minor crustal components from the NCC. The zircon rim domains and new growth grains from all the migmatite samples are characterized by anatectic zircons and have a widely concordant ages ranging from 112.2±2.8 to 159.6±4.3 Ma with several peak values, suggesting a long lasting multistage anatexis. In conclusion, the NDT has a mixed protolith origin of both the YC and the NCC crustal rocks were strongly remoulded by anatexis during orogenic collapse.

Key words

North Dabie terrane migmatite zircon U-Pb age protolith tectonic affinity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This study was supported by the National Basic Research Program of China (No. 2015CB856101), the National Natural Science Foundation of China (Nos. 41372076 and 41572039), and the Natural Science Foundation of Hubei Province (No. 2015CFB190). We thank Prof. Zhaochu Hu from China University of Geosciences (Wuhan) for his help with the LA-ICPMS zircon U-Pb dating. The final publication is available at Springer via https://doi.org/10.1007/s12583-017-0805-x.

Supplementary material

12583_2017_805_MOESM1_ESM.xls (265 kb)
Supplementary material, approximately 265 KB.

References Cited

  1. Bryant, D. L., Ayers, J. C., Gao, S., et al., 2004. Geochemical, Age, and Isotopic Constraints on the Location of the Sino-Korean/Yangtze Suture and Evolution of the Northern Dabie Complex, East Central China. Geological Society of America Bulletin, 116(5): 698–717. https://doi.org/10.1130/b25302.2CrossRefGoogle Scholar
  2. Chen, K., Gao, S., Wu, Y. B., et al., 2013. 2.6–2.7 Ga Crustal Growth in Yangtze Craton, South China. Precambrian Research, 224: 472–490. https://doi.org/10.1016/j.precamres.2012.10.017CrossRefGoogle Scholar
  3. Chen, R. X., Ding, B. H., Zheng, Y. F., et al., 2015. Multiple Episodes of Anatexis in a Collisional Orogen: Zircon Evidence from Migmatite in the Dabie Orogen. Lithos, 212–215: 247–265. https://doi.org/10.13039/501100002855CrossRefGoogle Scholar
  4. Chen, Y., Su, B., Guo, S., 2015. The Dabie-Sulu Orogenic Peridotites: Progress and Key Issues. Science China: Earth Sciences, 58(10): 1679–1699. https://doi.org/10.1007/s11430-015-5148-9CrossRefGoogle Scholar
  5. Chen, Y., Ye, K., Liu, J. B., et al., 2006. Multistage Metamorphism of the Huangtuling Granulite, Northern Dabie Orogen, Eastern China: Implications for the Tectonometamorphic Evolution of Subducted Lower Continental Crust. Journal of Metamorphic Geology, 24(7): 633–654. https://doi.org/10.1111/j.1525-1314.2006.00659.xCrossRefGoogle Scholar
  6. Cong, B. L., 1996. Ultrahigh-Pressure Metamorphic Rocks in the Dabieshan-Sulu Region of China. Science Press, Beijing. 224 (in Chinese)Google Scholar
  7. Corfu, F., Hanchar, J. M., Hoskin, P. W. O., et al., 2003. Atlas of Zircon Textures. Reviews in Mineralogy and Geochemistry, 53: 468–500CrossRefGoogle Scholar
  8. Diwu, C. R., Sun, Y., Liu, X. M., et al., 2007. Zircon U-Pb Ages and Hf Isotopes and Their Geological Significance of Yiyang TTG Gneisses from Henan Province, China. Acta Petrologica Sinica, 23(2): 253–262 (in Chinese with English Abstract)Google Scholar
  9. Diwu, C. R., Sun, Y., Guo, A. L., et al., 2011. Crustal Growth in the North China Craton at ∼2.5Ga: Evidence from in Situ Zircon U-Pb Ages, Hf Isotopes and Whole-Rock Geochemistry of the Dengfeng Complex. Gondwana Research, 20(1): 149–170. https://doi.org/10.1016/j.gr.2011.01.011CrossRefGoogle Scholar
  10. Diwu, C. R., Sun, Y., Lin, C. L., et al., 2010. LA-(MC)-ICPMS U-Pb Zircon Geochronology and Lu-Hf Isotope Compositions of the Taihua Complex on the Southern Margin of the North China Craton. Chinese Science Bulletin, 55(23): 2557–2571. https://doi.org/10.1007/s11434-010-3273-6CrossRefGoogle Scholar
  11. Diwu, C. R., Sun, Y., Lin, C. L., et al.., 2008. Detrital Zircon U-Pb Geochronology and Lu-Hf Isotope Compositions and Their Geological Significance of the Songshan Quartzite in Dengfeng Area, Henan Province. Chinese Science Bulletin, 53(16): 1923–1934 (in Chinese)Google Scholar
  12. Diwu, C. R., Sun, Y., Zhao, Y., et al., 2014. Early Paleoproterozoic (2.45–2.20 Ga) Magmatic Activity during the Period of Global Magmatic Shutdown: Implications for the Crustal Evolution of the Southern North China Craton. Precambrian Research, 255: 627–640. https://doi.org/10.13039/501100001809CrossRefGoogle Scholar
  13. Gao, S., Yang, J., Zhou, L., et al., 2011. Age and Growth of the Archean Kongling Terrain, South China, with Emphasis on 3.3 Ga Granitoid Gneisses. American Journal of Science, 311(2): 153–182. https://doi.org/10.2475/02.2011.03CrossRefGoogle Scholar
  14. Geng, Y. S., Du, L. L., Ren, L. D., 2012. Growth and Reworking of the Early Precambrian Continental Crust in the North China Craton: Constraints from Zircon Hf Isotopes. Gondwana Research, 21(2/3): 517–529. https://doi.org/10.1016/j.gr.2011.07.006CrossRefGoogle Scholar
  15. Guan, H., Sun, M., Wilde, S. A., et al., 2002. SHRIMP U-Pb Zircon Geochronology of the Fuping Complex: Implications for Formation and Assembly of the North China Craton. Precambrian Research, 113(1/2): 1–18. https://doi.org/10.1016/s0301-9268(01)00197-8CrossRefGoogle Scholar
  16. Guo, J. L., Gao, S., Wu, Y. B., et al., 2014. 3.45 Ga Granitic Gneisses from the Yangtze Craton, South China: Implications for Early Archean Crustal Growth. Precambrian Research, 242: 82–95. https://doi.org/10.1016/j.precamres.2013.12.018CrossRefGoogle Scholar
  17. Hacker, B. R., Ratschbacher, L., Webb, L., et al., 1998. U/Pb Zircon Ages Constrain the Architecture of the Ultrahigh-Pressure Qinling-Dabie Orogen, China. Earth and Planetary Science Letters, 161(1/2/3/4): 215–230. https://doi.org/10.1016/s0012-821x(98)00152-6CrossRefGoogle Scholar
  18. He, Y. S., Li, S. G., Hoefs, J., et al., 2011. Post-Collisional Granitoids from the Dabie Orogen: New Evidence for Partial Melting of a Thickened Continental Crust. Geochimica et Cosmochimica Acta, 75: 3815–3838CrossRefGoogle Scholar
  19. Hoskin, P. W. O., Black, L. P., 2000. Metamorphic Zircon Formation by Solid-State Recrystallization of Protolith Igneous Zircon. Journal of Metamorphic Geology, 18(4): 423–439. https://doi.org/10.1046/j.1525-1314.2000.00266.xCrossRefGoogle Scholar
  20. Hoskin, P. W. O., Schaltegger, U., 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27–62. https://doi.org/10.2113/0530027CrossRefGoogle Scholar
  21. Hou, Z. H., Li, S. G., Chen, N. S., et al., 2005. Sm-Nd and Zircon SHRIMP U-Pb Dating of Huilanshan Mafic Granulite in the Dabie Mountains and Its Zircon Trace Element Geochemistry. Science in China Series D: Earth Sciences, 48(12): 2081–2091. https://doi.org/10.1360/03yd0524CrossRefGoogle Scholar
  22. Huang, F., Li, S. G., Dong, F., et al., 2008. High-Mg Adakitic Rocks in the Dabie Orogen, Central China: Implications for Foundering Mechanism of Lower Continental Crust. Chemical Geology, 255(1/2): 1–13. https://doi.org/10.1016/j.chemgeo.2008.02.014CrossRefGoogle Scholar
  23. Jahn, B. M., Chen, B., 2007. Dabieshan UHP Metamorphic Terrane: Sr-Nd-Pb Isotopic Constraint to Pre-Metamorphic Subduction Polarity. International Geology Review, 49(1): 14–29. https://doi.org/10.2747/0020-6814.49.1.14CrossRefGoogle Scholar
  24. Jahn, B. M., Wu, F. Y., Lo, C. H., et al., 1999. Crust-Mantle Interaction Induced by Deep Subduction of the Continental Crust: Geochemical and Sr-Nd Isotopic Evidence from Post-Collisional Mafic-Ultramafic Intrusions of the Northern Dabie Complex, Central China. Chemical Geology, 157(1/2): 119–146. https://doi.org/10.1016/s0009-2541(98)00197-1CrossRefGoogle Scholar
  25. Jian, P., Kröner, A., Zhou, G. Z., 2012. SHRIMP Zircon U-Pb Ages and REE Partition for High-Grade Metamorphic Rocks in the North Dabie Complex: Insight into Crustal Evolution with Respect to Triassic UHP Metamorphism in East-Central China. Chemical Geology, 328: 49–69. https://doi.org/10.1016/j.chemgeo.2012.01.015CrossRefGoogle Scholar
  26. Jiao, W. F., Wu, Y. B., Yang, S. H., et al., 2009. The Oldest Basement Rock in the Yangtze Craton Revealed by Zircon U-Pb Age and Hf Isotope Composition. Science in China Series D: Earth Sciences, 52(9): 1393–1399. https://doi.org/10.1007/s11430-009-0135-7CrossRefGoogle Scholar
  27. Kröner, A., Wilde, S. A., Zhao, G. C., et al., 2006. Zircon Geochronology and Metamorphic Evolution of Mafic Dykes in the Hengshan Complex of Northern China: Evidence for Late Palaeoproterozoic Extension and Subsequent High-Pressure Metamorphism in the North China Craton. Precambrian Research, 146(1/2): 45–67. https://doi.org/10.1016/j.precamres.2006.01.008CrossRefGoogle Scholar
  28. Leech, M. L., 2001. Arrested Orogenic Development: Eclogitization, Delamination, and Tectonic Collapse. Earth and Planetary Science Letters, 185(1/2): 149–159. https://doi.org/10.1016/s0012-821x(00)00374-5CrossRefGoogle Scholar
  29. Li, S. G., Xiao, Y. L., Liou, D. L., et al., 1993. Collision of the North China and Yangtse Blocks and Formation of Coesite-Bearing Eclogites: Timing and Processes. Chemical Geology, 109(1/2/3/4): 89–111. https://doi.org/10.1016/0009-2541(93)90063-oCrossRefGoogle Scholar
  30. Li, X. H., 1999. U-Pb Zircon Ages of Granites from the Southern Margin of the Yangtze Block: Timing of Neoproterozoic Jinning: Orogeny in SE China and Implications for Rodinia Assembly. Precambrian Research, 97(1/2): 43–57. https://doi.org/10.1016/s0301-9268(99)00020-0CrossRefGoogle Scholar
  31. Liou, J. G., Zhang, R. Y., Eide, E. A., et al., 1996. Metamorphism and Tectonics of High-Pressure and Ultra-High-Pressure Belts in the Dabie-Sulu Region, China. In: Harrison, M. T., Yin, A., eds., The Tectonics of Asia. Cambridge University Press, Cambridge. 300–344Google Scholar
  32. Liu, D. Y., Nutman, A. P., Compston, W., et al., 1992. Remnants of ≥3 800 Ma Crust in the Chinese Part of the Sino-Korean Craton. Geology, 20(4): 339–342. https://doi.org/10.1130/0091-7613(1992)020<0339:romcit>2.3.co;2CrossRefGoogle Scholar
  33. Liu, F. L., Liou, J. G., 2011. Zircon as the Best Mineral for P-T-time History of UHP Metamorphism: A Review on Mineral Inclusions and U-Pb SHRIMP Ages of Zircons from the Dabie-Sulu UHP Rocks. Journal of Asian Earth Sciences, 40(1): 1–39. https://doi.org/10.1016/j.jseaes.2010.08.007CrossRefGoogle Scholar
  34. Liu, L., Yang, X. Y., Santosh, M., et al., 2015a. Neoproterozoic Intraplate Crustal Accretion on the Northern Margin of the Yangtze Block: Evidence from Geochemistry, Zircon SHRIMP U-Pb Dating and Hf Isotopes from the Fuchashan Complex. Precambrian Research, 268: 97–114. https://doi.org/10.13039/501100002858CrossRefGoogle Scholar
  35. Liu, L., Yang, X. Y., Santosh, M., et al., 2015b. Neoarchean to Paleoproterozoic Continental Growth in the Southeastern Margin of the North China Craton: Geochemical, Zircon U-Pb and Hf Isotope Evidence from the Huoqiu Complex. Gondwana Research, 28(3): 1002–1018. https://doi.org/10.13039/501100001809CrossRefGoogle Scholar
  36. Liu, Y. C., Gu, X. F., Li, S. G., et al., 2011. Multistage Metamorphic Events in Granulitized Eclogites from the North Dabie Complex Zone, Central China: Evidence from Zircon U-Pb Age, Trace Element and Mineral Inclusion. Lithos, 122(1/2): 107–121. https://doi.org/10.13039/501100002367CrossRefGoogle Scholar
  37. Liu, Y. C., Li, S. G., Xu, S. T., 2007a. Zircon SHRIMP U-Pb Dating for Gneisses in Northern Dabie High T/P Metamorphic Zone, Central China: Implications for Decoupling within Subducted Continental Crust. Lithos, 96(1/2): 170–185. https://doi.org/10.1016/j.lithos.2006.09.010CrossRefGoogle Scholar
  38. Liu, Y. C., Li, S. G., Gu, X. F., et al., 2007b. Ultrahigh-Pressure Eclogite Transformed from Mafic Granulite in the Dabie Orogen, East-Central China. Journal of Metamorphic Geology, 25(9): 975–989. https://doi.org/10.1111/j.1525-1314.2007.00739.xCrossRefGoogle Scholar
  39. Liu, Y. C., Wang, A. D., Rolfo, F., et al., 2009. Geochronological and Petrological Constraints on Palaeoproterozoic Granulite Facies Metamorphism in Southeastern Margin of the North China Craton. Journal of Metamorphic Geology, 27(2): 125–138. https://doi.org/10.1111/j.1525-1314.2008.00810.xCrossRefGoogle Scholar
  40. Ma, C. Q., Li, Z. C., Ehlers, C., et al., 1998. A Post-Collisional Magmatic Plumbing System: Mesozoic Granitoid Plutons from the Dabieshan High-Pressure and Ultrahigh-Pressure Metamorphic Zone, East-Central China. Lithos, 45(1/2/3/4): 431–456. https://doi.org/10.1016/s0024-4937(98)00043-7CrossRefGoogle Scholar
  41. Malaspina, N., Hermann, J., Scambelluri, M., et al., 2006. Multistage Metasomatism in Ultrahigh-Pressure Mafic Rocks from the North Dabie Complex (China). Lithos, 90(1/2): 19–42. https://doi.org/10.1016/j.lithos.2006.01.002CrossRefGoogle Scholar
  42. Okay, A. I., Şengör, A. M. C., Satir, M., 1993. Tectonics of an Ultrahigh-Pressure Metamorphic Terrane: The Dabie Shan/Tongbai Shan Orogen, China. Tectonics, 12(6): 1320–1334. https://doi.org/10.1029/93tc01544CrossRefGoogle Scholar
  43. Oliver, N. H. S., Bodorkos, S., Nemchin, A. A., et al., 1999. Relationships between Zircon U-Pb SHRIMP Ages and Leucosome Type in Migmatites of the Halls Creek Orogen, Western Australia. Journal of Petrology, 40(10): 1553–1575. https://doi.org/10.1093/petroj/40.10.1553CrossRefGoogle Scholar
  44. Ratschbacher, L., Hacker, B. R., Webb, L. E., et al., 2000. Exhumation of the Ultrahigh-Pressure Continental Crust in East Central China: Cretaceous and Cenozoic Unroofing and the Tan-Lu Fault. Journal of Geophysical Research: Solid Earth, 105(B6): 13303–13338. https://doi.org/10.1029/2000jb900040Google Scholar
  45. Rubatto, D., 2002. Zircon Trace Element Geochemistry: Partitioning with Garnet and the Link between U-Pb Ages and Metamorphism. Chemical Geology, 184(1/2): 123–138. https://doi.org/10.1016/s0009-2541(01)00355-2CrossRefGoogle Scholar
  46. Rubatto, D., Hermann, J., 2003. Zircon Formation during Fluid Circulation in Eclogites (Monviso, Western Alps): Implications for Zr and Hf Budget in Subduction Zones. Geochimica et Cosmochimica Acta, 67(12): 2173–2187. https://doi.org/10.1016/s0016-7037(02)01321-2CrossRefGoogle Scholar
  47. Song, B., Nutman, A. P., Liu, D. Y., et al., 1996. 3 800 to 2 500 Ma Crustal Evolution in the Anshan Area of Liaoning Province, Northeastern China. Precambrian Research, 78(1/2/3): 79–94. https://doi.org/10.1016/0301-9268(95)00070-4CrossRefGoogle Scholar
  48. Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313–345. https://doi.org/10.1144/gsl.sp.1989.042.01.19CrossRefGoogle Scholar
  49. Wan, Y. S., Liu, D. Y., Nutman, A., et al., 2012. Multiple 3.8–3.1 Ga Tectono-Magmatic Events in a Newly Discovered Area of Ancient Rocks (the Shengousi Complex), Anshan, North China Craton. Journal of Asian Earth Sciences, 54/55: 18–30. https://doi.org/10.1016/j.jseaes.2012.03.007CrossRefGoogle Scholar
  50. Wan, Y. S., Liu, D. Y., Dong, C. Y., et al., 2015. Formation and Evolution of Archean Continental Crust of the North China Craton. In: Zhai, M. G., ed., Precambrian Geology of China. Springer, 59–136Google Scholar
  51. Wang, C. Y., Zeng, R. S., Mooney, W. D., et al., 2000. A Crustal Model of the Ultrahigh-Pressure Dabie Shan Orogenic Belt, China, Derived from Deep Seismic Refraction Profiling. Journal of Geophysical Research: Solid Earth, 105(B5): 10857–10869. https://doi.org/10.1029/1999jb900415Google Scholar
  52. Wang, G. D., Lu, J. S., Wang, H., et al., 2013. LA-ICP-MS U-Pb Dating of Zircons and 40Ar/39Ar Dating of Amphiboles of the Taihua Metamorphic Complex, Mt. Huashan, Southern Terminal of the Palaeoprotorozoic Trans-North China Orogen. Acta Petrologica Sinica, 29(9): 3099–3114 (in Chinese with English Abstract)Google Scholar
  53. Wang, J. H., Sun, M., Deng, S. X., 2002. Geochronological Constraints on the Timing of Migmatization in the Dabie Shan, East-Central China. European Journal of Mineralogy, 14(3): 513–524. https://doi.org/10.1127/0935-1221/2002/0014-0513CrossRefGoogle Scholar
  54. Wang, Q., Wyman, D. A., Xu, J. F., et al., 2007. Early Cretaceous Adakitic Granites in the Northern Dabie Complex, Central China: Implications for Partial Melting and Delamination of Thickened Lower Crust. Geochimica et Cosmochimica Acta, 71(10): 2609–2636. https://doi.org/10.1016/j.gca.2007.03.008CrossRefGoogle Scholar
  55. Wang, Z. J., Wang, J., Du, Q. D., et al., 2013a. The Evolution of the Central Yangtze Block during Early Neoarchean Time: Evidence from Geochronology and Geochemistry. Journal of Asian Earth Sciences, 77: 31–44. https://doi.org/10.1016/j.jseaes.2013.08.013CrossRefGoogle Scholar
  56. Wang, Z. J., Wang, J., Du, Q. D., et al., 2013b. Mature Archean Continental Crust in the Yangtze Craton: Evidence from Petrology, Geochronology and Geochemistry. Chinese Science Bulletin, 58(19): 2360–2369. https://doi.org/10.1007/s11434-013-5668-7CrossRefGoogle Scholar
  57. Williams, I. S., Buick, I. S., Cartwright, I., 1996. An Extended Episode of Early Mesoproterozoic Metamorphic Fluid Flow in the Reynolds Range, Central Australia. Journal of Metamorphic Geology, 14(1): 29–47. https://doi.org/10.1111/j.1525-1314.1996.00029.xCrossRefGoogle Scholar
  58. Wu, Y. B., Zheng, Y. F., Gao, S., et al., 2008. Zircon U-Pb Age and Trace Element Evidence for Paleoproterozoic Granulite-Facies Metamorphism and Archean Crustal Rocks in the Dabie Orogen. Lithos, 101(3/4): 308–322. https://doi.org/10.1016/j.lithos.2007.07.008CrossRefGoogle Scholar
  59. Wu, Y. B., Zheng, Y. F., Zhang, S. B., et al., 2007. Zircon U-Pb Ages and Hf Isotope Compositions of Migmatite from the North Dabie Terrane in China: Constraints on Partial Melting. Journal of Metamorphic Geology, 25(9): 991–1009. https://doi.org/10.1111/j.1525-1314.2007.00738.xCrossRefGoogle Scholar
  60. Xie, Z., Chen, J. F., Cui, Y. R., 2010. Episodic Growth of Zircon in UHP Orthogneisses from the North Dabie Terrane of East-Central China: Implications for Crustal Architecture of a Collisional Orogen. Journal of Metamorphic Geology, 28(9): 979–995. https://doi.org/10.1111/j.1525-1314.2010.00902.xCrossRefGoogle Scholar
  61. Xie, Z., Chen, J. F., Zhang, X., et al., 2001. Zircon U-Pb Dating of Gneiss from Shizuhe in North Dabie and Its Geological Implications. Acta Petrolei Sinica, 17(1): 139–144 (in Chinese with English Abstract)Google Scholar
  62. Xie, Z., Gao, T. S., Chen, J. F., 2004. Multi-Stage Evolution of Gneiss from North Dabie: Evidence from Zircon U-Pb Chronology. Chinese Science Bulletin, 49(18): 1963–1969. https://doi.org/10.1007/bf03184290CrossRefGoogle Scholar
  63. Xu, C. H., Zhou, Z. Y., Ma, C. Q., et al., 2002. Geochronological Constraints on 140–85 Ma Thermal Doming Extension in the Dabie Orogen, Central China. Science in China Series D: Earth Sciences, 45(9): 801–817. https://doi.org/10.1007/bf02879515Google Scholar
  64. Xu, H. J., Ma, C. Q., Song, Y. R., et al., 2012a. Early Cretaceous Intermediate-Mafic Dykes in the Dabie Orogen, Eastern China: Petrogenesis and Implications for Crust-Mantle Interaction. Lithos, 154: 83–99. https://doi.org/10.1016/j.lithos.2012.06.030CrossRefGoogle Scholar
  65. Xu, H. J., Ma, C. Q., Zhang, J. F., 2012b. Generation of Early Cretaceous High-Mg Adakitic Host and Enclaves by Magma Mixing, Dabie Orogen, Eastern China. Lithos, 142/143: 182–200. https://doi.org/10.1016/j.lithos.2012.03.004CrossRefGoogle Scholar
  66. Xu, H. J., Ma, C. Q., Zhang, J. F., et al., 2012c. Early Cretaceous Low-Mg Adakitic Granites from the Dabie Orogen, Eastern China: Petrogenesis and Implications for Destruction of the Over-Thickened Lower Continental Crust. Gondwana Research, 23: 190–207CrossRefGoogle Scholar
  67. Xu, H. J., Ma, C. Q., Ye, K., 2007. Early Cretaceous Granitoids and Their Implications for the Collapse of the Dabie Orogen, Eastern China: SHRIMP Zircon U-Pb Dating and Geochemistry. Chemical Geology, 240(3/4): 238–259. https://doi.org/10.1016/j.chemgeo.2007.02.018CrossRefGoogle Scholar
  68. Xu, H. J., Ye, K., Song, Y. R., et al., 2013. Prograde Metamorphism, Decompressional Partial Melting and Subsequent Melt Fractional Crystallization in the Weihai Migmatitic Gneisses, Sulu UHP Terrane, Eastern China. Chemical Geology, 341: 16–37. https://doi.org/10.1016/j.chemgeo.2013.01.002CrossRefGoogle Scholar
  69. Xu, H. J., Zhang, J. F., 2017. Anatexis Witnessed Post-Collisional Evolution of the Dabie Orogen, China. Journal of Asian Earth Sciences, 145: 278–296. https://doi.org/10.13039/501100001809CrossRefGoogle Scholar
  70. Yang, W. C., 2003. Deep Structures of the East Dabie Ultrahigh-Pressure Metamorphic Belt, East China. Science in China Series D: Earth Sciences, 46(6): 612–624. https://doi.org/10.1007/bf02984539CrossRefGoogle Scholar
  71. Zhai, M. G., Cong, B. L., Zhang, Q., et al., 1994. The Northern Dabieshan Terrain: A Possible Andean-Type Arc. International Geology Review, 36(9): 867–883. https://doi.org/10.1080/00206819409465492CrossRefGoogle Scholar
  72. Zhai, M. G., Bian, A. G., Zhao, T. P., 2000. The Amalgamation of the Supercontinent of North China Craton at the End of Neo-Archaean and Its Breakup during Late Palaeoproterozoic and Meso-Proterozoic. Science in China Series D: Earth Sciences, 43(S1): 219–232. https://doi.org/10.1007/bf02911947CrossRefGoogle Scholar
  73. Zhai, M. G., 2013. The Main Old Lands in China and Assembly of Chinese Unified Continent. Science China Earth Sciences, 56(11): 1829–1852. https://doi.org/10.1007/s11430-013-4665-7CrossRefGoogle Scholar
  74. Zhang, C., Holtz, F., Koepke, J., et al., 2014. Decompressional Anatexis in the Migmatite Core Complex of Northern Dabie Orogen, Eastern China: Petrological Evidence and Ti-in-Quartz Thermobarometry. Lithos, 202/203: 227–236. https://doi.org/10.1016/j.lithos.2014.05.024Google Scholar
  75. Zhang, C. L., Diwu, C. R., Kröner, A., et al., 2015. Archean-Paleoproterozoic Crustal Evolution of the Ordos Block in the North China Craton: Constraints from Zircon U-Pb Geochronology and Hf Isotopes for Gneissic Granitoids of the Basement. Precambrian Research, 267: 121–136. https://doi.org/10.1016/j.precamres.2015.06.001CrossRefGoogle Scholar
  76. Zhang, H. F., Gao, S., Zhong, Z. Q., et al., 2002. Geochemical and Sr-Nd-Pb Isotopic Compositions of Cretaceous Granitoids: Constraints on Tectonic Framework and Crustal Structure of the Dabieshan Ultrahigh-Pressure Metamorphic Belt, China. Chemical Geology, 186(3/4): 281–299. https://doi.org/10.1016/s0009-2541(02)00006-2CrossRefGoogle Scholar
  77. Zhang, R. Y., Zhang, C. L., Diwu, C. R., et al., 2012. Zircon U-Pb Geochronology, Geochemistry and Its Geological Implications for the Precambrian Granitoids in Zhongtiao Mountain, Shanxi Province. Acta Petrologica Sinica, 28(11): 3559–3573 (in Chinese with English Abstract)Google Scholar
  78. Zhang, S. B., Zheng, Y. F., Wu, Y. B., et al., 2006. Zircon Isotope Evidence for ≥3.5 Ga Continental Crust in the Yangtze Craton of China. Precambrian Research, 146(1/2): 16–34. https://doi.org/10.1016/j.precamres.2006.01.002CrossRefGoogle Scholar
  79. Zhang, S. B., Zheng, Y. F., Zhao, Z. F., et al., 2008. Neoproterozoic Anatexis of Archean Lithosphere: Geochemical Evidence from Felsic to Mafic Intrusions at Xiaofeng in the Yangtze Gorge, South China. Precambrian Research, 163(3/4): 210–238. https://doi.org/10.1016/j.precamres.2007.12.003CrossRefGoogle Scholar
  80. Zhao, G. C., Wilde, S. A., Cawood, P. A., et al., 2002. SHRIMP U-Pb Zircon Ages of the Fuping Complex: Implications for Late Archean to Paleoproterozoic Accretion and Assembly of the North China Craton. American Journal of Science, 302(3): 191–226. https://doi.org/10.2475/ajs.302.3.191CrossRefGoogle Scholar
  81. Zhao, G. C., Wilde, S. A., Sun, M., et al., 2008. SHRIMP U-Pb Zircon Geochronology of the Huai’an Complex: Constraints on Late Archean to Paleoproterozoic Magmatic and Metamorphic Events in the Trans-North China Orogen. American Journal of Science, 308(3): 270–303. https://doi.org/10.2475/03.2008.04CrossRefGoogle Scholar
  82. Zhao, J. H., Zhou, M. F., 2008. Neoproterozoic Adakitic Plutons in the Northern Margin of the Yangtze Block, China: Partial Melting of a Thickened Lower Crust and Implications for Secular Crustal Evolution. Lithos, 104(1/2/3/4): 231–248. https://doi.org/10.1016/j.lithos.2007.12.009CrossRefGoogle Scholar
  83. Zhao, J. H., Zhou, M. F., 2009. Secular Evolution of the Neoproterozoic Lithospheric Mantle underneath the Northern Margin of the Yangtze Block, South China. Lithos, 107(3/4): 152–168. https://doi.org/10.1016/j.lithos.2008.09.017CrossRefGoogle Scholar
  84. Zhao, J. H., Zhou, M. F., Zheng, J. P., et al., 2010. Neoproterozoic Crustal Growth and Reworking of the Northwestern Yangtze Block: Constraints from the Xixiang Dioritic Intrusion, South China. Lithos, 120(3/4): 439–452. https://doi.org/10.1016/j.lithos.2010.09.005CrossRefGoogle Scholar
  85. Zhao, Z. F., Zheng, Y. F., Wei, C. S., et al., 2008. Zircon U-Pb Ages, Hf and O Isotopes Constrain the Crustal Architecture of the Ultrahigh-Pressure Dabie Orogen in China. Chemical Geology, 253(3/4): 222–242. https://doi.org/10.1016/j.chemgeo.2008.05.011CrossRefGoogle Scholar
  86. Zhao, Z. F., Zheng, Y. F., Wei, C. S., et al., 2007. Post-Collisional Granitoids from the Dabie Orogen in China: Zircon U-Pb Age, Element and O Isotope Evidence for Recycling of Subducted Continental Crust. Lithos, 93(3/4): 248–272. https://doi.org/10.1016/j.lithos.2006.03.067CrossRefGoogle Scholar
  87. Zhao, Z. F., Zheng, Y. F., Wei, C. S., et al., 2005. Zircon U-Pb Age, Element and C-O Isotope Geochemistry of Post-Collisional Mafic-Ultramafic Rocks from the Dabie Orogen in East-Central China. Lithos, 83(1/2): 1–28. https://doi.org/10.1016/j.lithos.2004.12.014CrossRefGoogle Scholar
  88. Zheng, J. P., Griffin, W. L., O’Reilly, S. Y., et al., 2006. Zircons in Mantle Xenoliths Record the Triassic Yangtze-North China Continental Collision. Earth and Planetary Science Letters, 247: 130–142CrossRefGoogle Scholar
  89. Zheng, J. P., Griffin, W. L., O’Reilly, S. Y., et al., 2004. 3.6 Ga Lower Crust in Central China: New Evidence on the Assembly of the North China Craton. Geology, 32(3): 229–232. https://doi.org/10.1130/g20133.1CrossRefGoogle Scholar
  90. Zheng, L., Zhi, X. C., Reisberg, L., 2009. Re-Os Systematics of the Raobazhai Peridotite Massifs from the Dabie Orogenic Zone, Eastern China. Chemical Geology, 268(1/2): 1–14. https://doi.org/10.1016/j.chemgeo.2009.06.021CrossRefGoogle Scholar
  91. Zheng, Y. F., 2008. A Perspective View on Ultrahigh-Pressure Metamorphism and Continental Collision in the Dabie-Sulu Orogenic Belt. Chinese Science Bulletin, 53(20): 3081–3104. https://doi.org/10.1007/s11434-008-0388-0Google Scholar
  92. Zheng, Y. F., 2012. Metamorphic Chemical Geodynamics in Continental Subduction Zones. Chemical Geology, 328: 5–48. https://doi.org/10.1016/j.chemgeo.2012.02.005CrossRefGoogle Scholar
  93. Zheng, Y. F., Fu, B., Gong, B., et al., 2003. Stable Isotope Geochemistry of Ultrahigh Pressure Metamorphic Rocks from the Dabie-Sulu Orogen in China: Implications for Geodynamics and Fluid Regime. Earth-Science Reviews, 62(1/2): 105–161. https://doi.org/10.1016/s0012-8252(02)00133-2CrossRefGoogle Scholar
  94. Zheng, Y. F., Wu, Y. B., Zhao, Z. F., et al., 2005. Metamorphic Effect on Zircon Lu-Hf and U-Pb Isotope Systems in Ultrahigh-Pressure Eclogite-Facies Metagranite and Metabasite. Earth and Planetary Science Letters, 240(2): 378–400. https://doi.org/10.1016/j.epsl.2005.09.025CrossRefGoogle Scholar
  95. Zhou, G. Y., Wu, Y. B., Gao, S., et al., 2015. The 2.65 Ga A-Type Granite in the Northeastern Yangtze Craton: Petrogenesis and Geological Implications. Precambrian Research, 258: 247–259. https://doi.org/10.1016/j.precamres.2015.01.003CrossRefGoogle Scholar
  96. Zhou, M. F., Yan, D. P., Kennedy, A. K., et al., 2002. SHRIMP U-Pb Zircon Geochronological and Geochemical Evidence for Neoproterozoic Arc-Magmatism along the Western Margin of the Yangtze Block, South China. Earth and Planetary Science Letters, 196(1/2): 51–67. https://doi.org/10.1016/s0012-821x(01)00595-7CrossRefGoogle Scholar

Copyright information

© China University of Geosciences and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.State Key Laboratory of Geological Processes and Mineral Resources, School of Earth SciencesChina University of GeosciencesWuhanChina

Personalised recommendations