Journal of Earth Science

, Volume 29, Issue 1, pp 43–56 | Cite as

Zircon Trace Element Constraints on the Evolution of the Paleoproterozoic Birimian Granitoids of the West African Craton (Ghana)

  • Patrick Asamoah Sakyi
  • Benxun Su
  • Daniel Kwayisi
  • Chen Chen
  • Yang Bai
  • Melesse Alemayehu
Mineralogy and Petrogeochemistry


The Paleoproterozoic Birimian granitoids of the West African Craton (WAC) in the northwestern part of Ghana, have been studied for their zircon trace elements concentrations to infer the source characteristics, origin, and magmatic evolution. The zircons in the granitoids have Th/U ratios ranging from 0.03 to 1.55, and display depleted light rare earth elements (LREE) and enriched heavy rare earth elements (HREE) contents, characterized by pronounced positive to negative anomalies of Eu (Eu/Eu*=0.14–0.98 and 1.01–6.06, respectively) and Ce (Ce/Ce*=0.08–0.98 and 1.02–116, respectively), which may imply that they were derived from both magmatic and hydrothermal sources. The geochemical plots of U/Yb vs. Y and Hf, the positive correlation between Hf and the other high field strength elements (HFSE) and high rare earth elements (REE) contents, with enrichment in Ce and depletion in Eu, indicate that the granitoids possibly formed from partial melting of the crust. The trace elements characteristics (i.e., wide range of Hf, Ce/Ce*, Th/U and Zr/Hf values) of the zircons suggest that crystallization of the magma occurred under variable oxidation states, which spanned over a longer period, implying that our data corroborate interpretations from studies of whole-rock geochemistry and geochronology on the granitoids of northwestern Ghana. This further indicates that the evolution of the Birimian granitoids in this part of the WAC occurred earlier than what had been reported in the literature.

Key words

West African Craton granitoids zircon trace elements magmatic evolution hydrothermal alteration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This research was funded by the National Natural Science Foundation of China (No. 41522203) and the Youth Innovation Promotion Association, Chinese Academy of Sciences (No. 2016067) to Benxun Su. The authors wish to acknowledge Sai- Hong Yang of the Electron Microscopy Laboratory of IGGCAS for her assistance during the acquisition of CL images. We are also grateful to the Eastern Regional Office of the Geological Survey Department of Ghana, for providing logistical support and assisting in the field work. The final publication is available at Springer via

Supplementary material

12583_2017_799_MOESM1_ESM.xlsx (68 kb)
Table S1 Trace element concentrations (ppm) and U-Pb ages for the zircons from the granitoids of the Lawra greenstone belt. U-Pb ages are from Sakyi et al. (2014)

References Cited

  1. Abouchami, W., Boher, M., Michard, A., et al., 1990. A Major 2.1 Ga Event of Mafic Magmatism in West Africa: An Early Stage of Crustal Accretion. Journal of Geophysical Research, 95(B11): 17605–17629. doi:10.1029/jb095ib11p17605CrossRefGoogle Scholar
  2. Agyei-Duodu, J., Loh, G. K., Boamah, K. D., et al., 2009. Geological Map of Ghana 1: 1 000 000. Geological Survey Department of Ghana (GSD), AccraGoogle Scholar
  3. Amponsah, P. O., Salvi, S., Béziat, D., et al., 2015. Geology and Geochemistry of the Shear-Hosted Julie Gold Deposit, NW Ghana. Journal of African Earth Sciences, 112: 505–523. doi:10.1016/j.jafrearsci.2015.06.013CrossRefGoogle Scholar
  4. Amponsah, P. O., Salvi, S., Didier, B., et al., 2016. Multistage Gold Mineralization in the Wa-Lawra Greenstone Belt, NW Ghana: The Bepkong Deposit. Journal of African Earth Sciences, 120: 220–237. doi:10.1016/j.jafrearsci.2016.05.005CrossRefGoogle Scholar
  5. Anum, S., Sakyi, P. A., Su, B. X., et al., 2015. Geochemistry and Geochronology of Granitoids in the Kibi-Asamankese Area of the Kibi-Winneba Volcanic Belt, Southern Ghana. Journal of African Earth Sciences, 102: 166–179. doi:10.1016/j.jafrearsci.2014.11.007CrossRefGoogle Scholar
  6. Attoh, K., Evans, M. J., Bickford, M. E., 2006. Geochemistry of an Ultramafic-Rodingite Rock Association in the Paleoproterozoic Dixcove Greenstone Belt, Southwestern Ghana. Journal of African Earth Sciences, 45(3): 333–346. doi:10.1016/j.jafrearsci.2006.03.010CrossRefGoogle Scholar
  7. Baratoux, L., Metelka, V., Naba, S., et al., 2011. Juvenile Paleoproterozoic Crust Evolution during the Eburnean Orogeny (~2.2–2.0 Ga), Western Burkina Faso. Precambrian Research, 191(1/2): 18–45. doi:10.1016/j.precamres.2011.08.010CrossRefGoogle Scholar
  8. Belousova, E. A., Griffin, W. L., O’Reilly, S. Y., 2006. Zircon Crystal Morphology, Trace Element Signatures and Hf Isotope Composition as a Tool for Petrogenetic Modelling: Examples from Eastern Australian Granitoids. Journal of Petrology, 47(2): 329–353. doi:10.1093/petrology/egi077CrossRefGoogle Scholar
  9. Belousova, E. A., Griffin, W. L., Pearson, N. J., 1998. Trace Element Composition and Cathodoluminescence Properties of Southern African Kimberlitic Zircons. Mineralogical Magazine, 62(3): 355–366. doi:10.1180/002646198547747CrossRefGoogle Scholar
  10. Belousova, E. A., Griffin, W. L., O’Reilly, S. Y., et al., 2002. Igneous Zircon: Trace Element Composition as an Indicator of Source Rock Type. Contributions to Mineralogy and Petrology, 143(5): 602–622. doi:10.1007/s00410-002-0364-7CrossRefGoogle Scholar
  11. Béziat, D., Bourges, F., Debat, P., et al., 2000. A Paleoproterozoic Ultramafic-Mafic Assemblage and Associated Volcanic Rocks of the Boromo Greenstone Belt: Fractionates Originating from Island-Arc Volcanic Activity in the West African Craton. Precambrian Research, 101(1): 25–47. doi:10.1016/s0301-9268(99)00085-6CrossRefGoogle Scholar
  12. Block, S., Ganne, J., Baratoux, L., et al., 2015. Petrological and Geochronological Constraints on Lower Crust Exhumation during Paleoproterozoic (Eburnean) Orogeny, NW Ghana, West African Craton. Journal of Metamorphic Geology, 33(5): 463–494. doi:10.1111/jmg.12129CrossRefGoogle Scholar
  13. Block, S., Jessell, M., Aillères, L., et al., 2016a. Lower Crust Exhumation during Paleoproterozoic (Eburnean) Orogeny, NW Ghana, West African Craton: Interplay of Coeval Contractional Deformation and Extensional Gravitational Collapse. Precambrian Research, 274: 82–109. doi:10.1016/j.precamres.2015.10.014CrossRefGoogle Scholar
  14. Block, S., Baratoux, L., Zeh, A., et al., 2016b. Paleoproterozoic Juvenile Crust Formation and Stabilisation in the South-Eastern West African Craton (Ghana); New Insights from U-Pb-Hf Zircon Data and Geochemistry. Precambrian Research, 287: 1–30. doi:10.1016/j.precamres.2016.10.011CrossRefGoogle Scholar
  15. Boher, M., Abouchami, W., Michard, A., et al., 1992. Crustal Growth in West Africa at 2.1 Ga. Journal of Geophysical Research, 97(B1): 345–369. doi:10.1029/91jb01640CrossRefGoogle Scholar
  16. Bolhar, R., Weaver, S. D., Palin, J. M., et al., 2008. Systematics of Zircon Crystallisation in the Cretaceous Separation Point Suite, New Zealand, Using U/Pb Isotopes, REE and Ti Geothermometry. Contributions to Mineralogy and Petrology, 156(2): 133–160. doi:10.1007/s00410-007-0278-5CrossRefGoogle Scholar
  17. Bottazzi, P., Tiepolo, M., Vannucci, R., et al., 1999. Distinct Site Preferences for Heavy and Light REE in Amphibole and the Prediction of Amph/LDREE. Contributions to Mineralogy and Petrology, 137(1/2): 36–45. doi:10.1007/s004100050580CrossRefGoogle Scholar
  18. Boynton, W. V., 1984. Geochemistry of Rare Earth Elements: Meteorite Studies. In: Henderson, P., ed., Rare Earth Element Geochemistry. Elsevier, Amsterdam. 63–114. doi:10.1016/B978-0-444-42148-7.50008-3Google Scholar
  19. Cao, Y., Li, S. R., Zhang, H. F., et al., 2011. Significance of Zircon Trace Element Geochemistry, the Shihu Gold Deposit, Western Hebei Province, North China. Journal of Rare Earths, 29(3): 277–286. doi:10.1016/s1002-0721(10)60445-0CrossRefGoogle Scholar
  20. Dampare, S. B., Shibata, T., Asiedu, D. K., et al., 2008. Geochemistry of Paleoproterozoic Metavolcanic Rocks from the Southern Ashanti Volcanic Belt, Ghana: Petrogenetic and Tectonic Setting Implications. Precambrian Research, 162(3/4): 403–423. doi:10.1016/j.precamres.2007.10.001CrossRefGoogle Scholar
  21. Davis, D. W., Hirdes, W., Schaltegger, U., et al., 1994. U-Pb Age Constraints on Deposition and Provenance of Birimian and Gold-Bearing Tarkwaian Sediments in Ghana, West Africa. Precambrian Research, 67(1/2): 89–107. doi:10.1016/0301-9268(94)90006-xCrossRefGoogle Scholar
  22. de Kock, G. S., Armstrong, R. A., Siegfried, H. P., et al., 2011. Geochronology of the Birim Supergroup of the West African Craton in the Wa-Bolé Region of West-Central Ghana: Implications for the Stratigraphic Framework. Journal of African Earth Sciences, 59(1): 1–40. doi:10.1016/j.jafrearsci.2010.08.001CrossRefGoogle Scholar
  23. de Kock, G. S., Théveniaut, H., Botha, P. M. W., et al., 2012. Timing the Structural Events in the Palaeoproterozoic Bolé-Nangodi Belt Terrane and Adjacent Maluwe Basin, West African Craton, in Central-West Ghana. Journal of African Earth Sciences, 65: 1–24. doi:10.1016/j.jafrearsci.2011.11.007CrossRefGoogle Scholar
  24. Doumbia, S., Pouclet, A., Kouamelan, A., et al., 1998. Petrogenesis of Juvenile-Type Birimian (Paleoproterozoic) Granitoids in Central Côted'Ivoire, West Africa: Geochemistry and Geochronology. Precambrian Research, 87(1/2): 33–63. doi:10.1016/s0301-9268(97)00201-5CrossRefGoogle Scholar
  25. El-Bialy, M. Z., Ali, K. A., 2013. Zircon Trace Element Geochemical Constraints on the Evolution of the Ediacaran (600–614 Ma) Post-Collisional Dokhan Volcanics and Younger Granites of SE Sinai, NE Arabian-Nubian Shield. Chemical Geology, 360/361: 54–73. doi:10.1016/j.chemgeo.2013.10.009CrossRefGoogle Scholar
  26. Ferry, J. M., Watson, E. B., 2007. New Thermodynamic Models and Revised Calibrations for the Ti-in-Zircon and Zr-in-Rutile Thermometers. Contributions to Mineralogy and Petrology, 154(4): 429–437. doi:10.1007/s00410-007-0201-0CrossRefGoogle Scholar
  27. Fu, B., Mernagh, T. P., Kita, N. T., et al., 2009. Distinguishing Magmatic Zircon from Hydrothermal Zircon: A Case Study from the Gidginbung High-Sulphidation Au-Ag-(Cu) Deposit, SE Australia. Chemical Geology, 259(3/4): 131–142. doi:10.1016/j.chemgeo.2008.10.035CrossRefGoogle Scholar
  28. Gagnevin, D., Daly, J. S., Kronz, A., 2010. Zircon Texture and Chemical Composition as a Guide to Magmatic Processes and Mixing in a Granitic Environment and Coeval Volcanic System. Contributions to Mineralogy and Petrology, 159(4): 579–596. doi:10.1007/s00410-009-0443-0CrossRefGoogle Scholar
  29. Ganne, J., De Andrade, V., Weinberg, R. F., et al., 2012. Modern-Style Plate Subduction Preserved in the Palaeoproterozoic West African Craton. Nature Geoscience, 5(1): 60–65. doi:10.1038/ngeo1321CrossRefGoogle Scholar
  30. Gordon, S. M., Whitney, D. L., Teyssier, C., et al., 2013. U-Pb Dates and Trace-Element Geochemistry of Zircon from Migmatite, Western Gneiss Region, Norway: Significance for History of Partial Melting in Continental Subduction. Lithos, 170/171: 35–53. doi:10.1016/j.lithos.2013.02.003CrossRefGoogle Scholar
  31. Grimes, C. B., John, B. E., Kelemen, P. B., et al., 2007. Trace Element Chemistry of Zircons from Oceanic Crust: A Method for Distinguishing Detrital Zircon Provenance. Geology, 35(7): 643–646. doi:10.1130/g23603a.1CrossRefGoogle Scholar
  32. Hafnadóttir, M. O., 2014. Understanding Igneous Processes through Zircon Trace Element Systematics: Prospects and Pitfall: [Dissertation]. Lund University, Lund. 109Google Scholar
  33. Harrison, T. M., Watson, E. B., Aikman, A. B., 2007. Temperature Spectra of Zircon Crystallization in Plutonic Rocks. Geology, 35(7): 635–638. doi:10.1130/g23505a.1CrossRefGoogle Scholar
  34. Heaman, L. M., Bowins, R., Crocket, J., 1990. The Chemical Composition of Igneous Zircon Suites: Implications for Geochemical Tracer Studies. Geochimica et Cosmochimica Acta, 54(6): 1597–1607. doi:10.1016/0016-7037(90)90394-zCrossRefGoogle Scholar
  35. Hirdes, W., Davis, D. W., 1998. First U-Pb Zircon Age of Extrusive Volcanism in the Birimian Supergroup of Ghana, West Africa. Journal of African Earth Sciences, 27(2): 291–294. doi:10.1016/s0899-5362(98)00062-1CrossRefGoogle Scholar
  36. Hirdes, W., Davis, D. W., Eisenlohr, B. N., 1992. Reassessment of Proterozoic Granitoid Ages in Ghana on the Basis of U/Pb Zircon and Monazite Dating. Precambrian Research, 56(1/2): 89–96. doi:10.1016/0301-9268(92)90085-3CrossRefGoogle Scholar
  37. Hoskin, P. W. O., 1998. Minor and Trace Element Analysis of Natural Zircon (ZrSiO4) by SIMS and Laser Ablation ICPMS: A Consideration and Comparison of Two Broadly Competitive Techniques. Journal of Trace and Microprobe Techniques, 16: 301–326Google Scholar
  38. Hoskin, P. W. O., 2005. Trace-Element Composition of Hydrothermal Zircon and the Alteration of Hadean Zircon from the Jack Hills, Australia. Geochimica et Cosmochimica Acta, 69(3): 637–648. doi:10.1016/j.gca.2004.07.006CrossRefGoogle Scholar
  39. Hoskin, P. W. O., Ireland, T. R., 2000. Rare Earth Element Chemistry of Zircon and Its Use as a Provenance Indicator. Geology, 28(7): 627–630. doi:10.1130/0091-7613(2000)28<627:reecoz>;2CrossRefGoogle Scholar
  40. Hoskin, P. W. O., Kinny, P. D., Wyborn, D., et al., 2000. Identifying Accessory Mineral Saturation during Differentiation in Granitoid Magmas: An Integrated Approach. Journal of Petrology, 41(9): 1365–1396. doi:10.1093/petrology/41.9.1365CrossRefGoogle Scholar
  41. Hoskin, P. W. O., Schaltegger, U., 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. In: Hanchar, J. M., Hoskin, P. W. O., eds., Zircon. Reviews in Mineralogy and Geochemistry, 53(1): 27–62. doi:10.2113/0530027CrossRefGoogle Scholar
  42. Hu, Z. L., Wang, X. W., Qin, Z. P., et al., 2012. Basic Characteristics of Zircon Trace Elements and Their Genetic Significances in Jiama Copper Polymetallic Deposit. Nonferrous Metals (Min. Sect.), 64: 58–63 (in Chinese with English Abstract)Google Scholar
  43. Kesse, G. O., 1985. The Mineral and Rock Resources of Ghana. Balkema, Rotterdam/BostonGoogle Scholar
  44. Lei, W. Y., Shi, G. H., Liu, Y. X., 2013. Research Progress on Trace Element Characteristics of Zircons of Different Origins. Frontiers of Earth Science, 20: 1–12Google Scholar
  45. Li, H., Watanabe, K., Yonezu, K., 2014. Zircon Morphology, Geochronology and Trace Element Geochemistry of the Granites from the Huangshaping Polymetallic Deposit, South China: Implications for the Magmatic Evolution and Mineralization Processes. Ore Geology Reviews, 60: 14–35. doi:10.1016/j.oregeorev.2013.12.009CrossRefGoogle Scholar
  46. Li, N., Chen, Y. J., Pirajno, F., et al., 2012. LA-ICP-MS Zircon U-Pb Dating, Trace Element and Hf Isotope Geochemistry of the Heyu Granite Batholith, Eastern Qinling, Central China: Implications for Mesozoic Tectono-Magmatic Evolution. Lithos, 142/143: 34–47. doi:10.1016/j.lithos.2012.02.013CrossRefGoogle Scholar
  47. Linnen, R. L., Keppler, H., 2002. Melt Composition Control of Zr/Hf Fractionation in Magmatic Processes. Geochimica et Cosmochimica Acta, 66(18): 3293–3301. doi:10.1016/s0016-7037(02)00924-9CrossRefGoogle Scholar
  48. Liu, X. M., Gao, S., Diwu, C. R., et al., 2007. Simultaneous In-Situ Determination of U-Pb Age and Trace Elements in Zircon by LA-ICP-MS in 20 μm Spot Size. Chinese Science Bulletin, 52(9): 1257–1264. doi:10.1007/s11434-007-0160-xCrossRefGoogle Scholar
  49. Lompo, M., 2009. Geodynamic Evolution of the 2.25–2.0 Ga Palaeoproterozoic Magmatic Rocks in the Man-Leo Shield of the West African Craton: A Model of Subsidence of an Oceanic Plateau. Geological Society, London, Special Publications, 323(1): 231–254. doi:10.1144/sp323.11CrossRefGoogle Scholar
  50. Montero, P., Haissen, F., Mouttaqi, A., et al., 2016. Contrasting SHRIMP U-Pb Zircon Ages of Two Carbonatite Complexes from the Peri-Cratonic Terranes of the Reguibat Shield: Implications for the Lateral Extension of the West African Craton. Gondwana Research, 38: 238–250. doi:10.1016/ Scholar
  51. Opare-Addo, E., John, B. E., Browing, P., 1993. Field and Geochronologic (U-Pb) Constraints on the Age and Generation of Granitoids and Migmatites in Southern Ghana. EOS Trans AGU Abstract Supplement, 74: S30.1CrossRefGoogle Scholar
  52. Orejana, D., Villaseca, C., Armstrong, R. A., et al., 2011. Geochronology and Trace Element Chemistry of Zircon and Garnet from Granulite Xenoliths: Constraints on the Tectonothermal Evolution of the Lower Crust under Central Spain. Lithos, 124(1/2): 103–116. doi:10.1016/j.lithos.2010.10.011CrossRefGoogle Scholar
  53. Page, F. Z., Fu, B., Kita, N. T., et al., 2007. Zircons from Kimberlite: New Insights from Oxygen Isotopes, Trace Elements, and Ti in Zircon Thermometry. Geochimica et Cosmochimica Acta, 71(15): 3887–3903. doi:10.1016/j.gca.2007.04.031CrossRefGoogle Scholar
  54. Parra-Avila, L. A., Belousova, E., Fiorentini, M. L., et al., 2016. Crustal Evolution of the Paleoproterozoic Birimian Terranes of the Baoulé-Mossi Domain, Southern West African Craton: U-Pb and Hf-Isotope Studies of Detrital Zircons. Precambrian Research, 274: 25–60. doi:10.13039/501100000923CrossRefGoogle Scholar
  55. Petersson, A., Scherstén, A., Kemp, A. I. S., et al., 2016. Zircon U-Pb-Hf Evidence for Subduction Related Crustal Growth and Reworking of Archaean Crust within the Palaeoproterozoic Birimian Terrane, West African Craton, SE Ghana. Precambrian Research, 275: 286–309. doi:10.1016/j.precamres.2016.01.006CrossRefGoogle Scholar
  56. Pettke, T., Audétat, A., Schaltegger, U., et al., 2005. Magmatic-to-Hydrothermal Crystallization in the W-Sn Mineralized Mole Granite (NSW, Australia). Chemical Geology, 220(3/4): 191–213. doi:10.1016/j.chemgeo.2005.02.017CrossRefGoogle Scholar
  57. Peucat, J. J., Capdevila, R., Drareni, A., et al., 2005. The Eglab Massif in the West African Craton (Algeria), an Original Segment of the Eburnean Orogenic Belt: Petrology, Geochemistry and Geochronology. Precambrian Research, 136(3/4): 309–352. doi:10.1016/j.precamres.2004.12.002CrossRefGoogle Scholar
  58. Pobedash, I. D., 1991. Report on the Geology and Minerals of the South-Western Part of the Wa Field Sheet. Ghana Geological Survey Archive Report, 51: 95Google Scholar
  59. Poller, U., 2001. REE, U, Th, and Hf Distribution in Zircon from Western Carpathian Variscan Granitoids: A Combined Cathodoluminescence and Ion Microprobe Study. American Journal of Science, 301(10): 858–876. doi:10.2475/ajs.301.10.858CrossRefGoogle Scholar
  60. Rayner, N., Stern, R. A., Carr, S. D., 2005. Grain-Scale Variations in Trace Element Composition of Fluid-Altered Zircon, Acasta Gneiss Complex, Northwestern Canada. Contributions to Mineralogy and Petrology, 148(6): 721–734. doi:10.1007/s00410-004-0633-8CrossRefGoogle Scholar
  61. Roudakov, V. M., 1991. Report on the Geology and Minerals of the Northwestern Part of the Wa Field Sheet. Ghana Geological Survey Archive Report, 50: 95Google Scholar
  62. Rubatto, D., 2002. Zircon Trace Element Geochemistry: Partitioning with Garnet and the Link between U-Pb Ages and Metamorphism. Chemical Geology, 184(1/2): 123–138. doi:10.1016/s0009-2541(01)00355-2CrossRefGoogle Scholar
  63. Rudnick, R., Gao, S., 2003. Composition of the Continental Crust. Treatise on Geochemistry, 3: 1–64Google Scholar
  64. Sakyi, P. A., Su, B. X., Anum, S., et al., 2014. New Zircon U-Pb Ages for Erratic Emplacement of 2 213–2 130 Ma Paleoproterozoic Calc-Alkaline I-Type Granitoid Rocks in the Lawra Volcanic Belt of Northwestern Ghana, West Africa. Precambrian Research, 254: 149–168. doi:10.13039/501100001809CrossRefGoogle Scholar
  65. Samokhin, A. A., Lashmanov, V. I., 1991. Geology and Minerals of the Northern Part of the Bole Field Sheet. Ghana. Ghana Geological Survey Archive Report, 53: 118Google Scholar
  66. Sylvester, P. J., Attoh, K., 1992. Lithostratigraphy and Composition of 2.1 Ga Greenstone Belts of the West African Craton and Their Bearing on Crustal Evolution and the Archean-Proterozoic Boundary. The Journal of Geology, 100(4): 377–393. doi:10.1086/629593CrossRefGoogle Scholar
  67. Tapsoba, B., Lo, C. H., Jahn, B. M., et al., 2013a. Chemical and Sr-Nd Isotopic Compositions and Zircon U-Pb Ages of the Birimian Granitoids from NE Burkina Faso, West African Craton: Implications on the Geodynamic Setting and Crustal Evolution. Precambrian Research, 224: 364–396. doi:10.1016/j.precamres.2012.09.013CrossRefGoogle Scholar
  68. Tapsoba, B., Lo, C. H., Wenmenga, U., et al., 2013b. 40Ar/39Ar Thermochronology of Paleoproterozoic Granitoids of Northeast Burkina Faso, West African Craton: Implications for Regional Tectonics. Precambrian Research, 235: 208–229. doi:10.1016/j.precamres.2013.06.012CrossRefGoogle Scholar
  69. Vidal, M., Alric, G., 1994. The Palaeoproterozoic (Birimian) of Haute-Comoé in the West African Craton, Ivory Coast: A Transtensional Back-Arc Basin. Precambrian Research, 65(1/2/3/4): 207–229. doi:10.1016/0301-9268(94)90106-6CrossRefGoogle Scholar
  70. Wang, F. Y., Liu, S. A., Li, S. G., et al., 2013. Contrasting Zircon Hf-O Isotopes and Trace Elements between Ore-Bearing and Ore-Barren Adakitic Rocks in Central-Eastern China: Implications for Genetic Relation to Cu-Au Mineralization. Lithos, 156–159: 97–111. doi:10.1016/j.lithos.2012.10.017CrossRefGoogle Scholar
  71. Wang, Q., Zhu, D. C., Zhao, Z. D., et al., 2012. Magmatic Zircons from I-, S-and A-Type Granitoids in Tibet: Trace Element Characteristics and Their Application to Detrital Zircon Provenance Study. Journal of Asian Earth Sciences, 53: 59–66. doi:10.1016/j.jseaes.2011.07.027CrossRefGoogle Scholar
  72. Wang, X., Griffin, W. L., Chen, J., et al., 2011. U and Th Contents and Th/U Ratios of Zircon in Felsic and Mafic Magmatic Rocks: Improved Zircon-Melt Distribution Coefficients. Acta Geologica Sinica—English Edition, 85(1): 164–174. doi:10.1111/j.1755-6724.2011.00387.xCrossRefGoogle Scholar
  73. Wang, X., Pupin, J. P., 1992. Distribution Characteristics of Trace Elements in Zircons from Granitic Rocks. Scientia Geologica Sinica, 2: 131–140Google Scholar
  74. Whitehouse, M. J., Kamber, B. S., 2002. On the Overabundance of Light Rare Earth Elements in Terrestrial Zircons and Its Implication for Earth’s Earliest Magmatic Differentiation. Earth and Planetary Science Letters, 204(3/4): 333–346. doi:10.1016/s0012-821x(02)01000-2CrossRefGoogle Scholar
  75. Whitehouse, M. J., Platt, J. P., 2003. Dating High-Grade Metamorphism— Constraints from Rare-Earth Elements in Zircon and Garnet. Contributions to Mineralogy and Petrology, 145(1): 61–74. doi:10.1007/s00410-002-0432-zCrossRefGoogle Scholar
  76. Wilde, S. A., Youssef, K., 2000. Significance of SHRIMP U-Pb Dating of the Imperial Porphyry and Associated Dokhan Volcanics, Gebel Dokhan, North Eastern Desert, Egypt. Journal of African Earth Sciences, 31(2): 403–413. doi:10.1016/s0899-5362(00)00096-8CrossRefGoogle Scholar
  77. Wood, D. A., Joron, J. L., Treuil, M., 1979. A Re-Appraisal of the Use of Trace Elements to Classify and Discriminate between Magma Series Erupted in Different Tectonic Settings. Earth and Planetary Science Letters, 45(2): 326–336. doi:10.1016/0012-821x(79)90133-xCrossRefGoogle Scholar
  78. Wu, T., Xiao, L., Ma, C. Q., 2016. U-Pb Geochronology of Detrital and Inherited Zircons in the Yidun Arc Belt, Eastern Tibet Plateau and Its Tectonic Implications. Journal of Earth Science, 27(3): 461–473. doi:10.1007/s12583-016-0675-5CrossRefGoogle Scholar
  79. Xia, Q. X., Zheng, Y. F., Hu, Z. C., 2010. Trace Elements in Zircon and Coexisting Minerals from Low-T/UHP Metagranite in the Dabie Orogen: Implications for Action of Supercritical Fluid during Continental Subduction-Zone Metamorphism. Lithos, 114(3/4): 385–412. doi:10.1016/j.lithos.2009.09.013CrossRefGoogle Scholar
  80. Xie, L. W., Zhang, Y. B., Zhang, H. H., et al., 2008. In Situ Simultaneous Determination of Trace Elements, U-Pb and Lu-Hf Isotopes in Zircon and Baddeleyite. Science Bulletin, 53(10): 1565–1573. doi:10.1007/s11434-008-0086-yCrossRefGoogle Scholar
  81. Zhang, X. W., Xiang, H., Zhong, Z. Q., et al., 2009. U-Pb Dating and Trace Elements Composition of Hydrothermal Zircons from Jianfengling Granite, Hainan: Restriction on the Age of Hydrothermal Event and Mineralization of Baolun Gold Deposit. Earth Science—Journal of China University of Geosciences, 34: 921–930 (in Chinese with English Abstract)CrossRefGoogle Scholar
  82. Zhao, K. D., Jiang, S. Y., Sun, T., et al., 2013. Zircon U-Pb Dating, Trace Element and Sr-Nd-Hf Isotope Geochemistry of Paleozoic Granites in the Miao’ershan-Yuechengling Batholith, South China: Implication for Petrogenesis and Tectonic-Magmatic Evolution. Journal of Asian Earth Sciences, 74: 244–264. doi:10.1016/j.jseaes.2012.12.026CrossRefGoogle Scholar

Copyright information

© China University of Geosciences and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Earth Science, School of Physical and Mathematical SciencesUniversity of GhanaLegon-AccraGhana
  2. 2.Key Laboratory of Mineral Resources, Institute of Geology and GeophysicsChinese Academy of SciencesBeijingChina
  3. 3.School of Earth ScienceUniversity of Chinese Academy of SciencesBeijingChina
  4. 4.School of Applied Natural Science, Applied Geology DepartmentAdama Science and Technology UniversityAdamaEthiopia

Personalised recommendations