Journal of Earth Science

, Volume 28, Issue 2, pp 305–314 | Cite as

Dolomitization by penesaline sea water in Early Cambrian Longwangmiao Formation, central Sichuan Basin, China

  • Xuefei Yang
  • Hao Tang
  • Xingzhi Wang
  • Yaping Wang
  • Yueming Yang
Sedimentology and Basin Dynamics

Abstract

The Lower Cambrian Longwangmiao Formation shoal dolostone reservoir in Sichuan Basin is currently an exploration and research highlight in China. Reservoir rocks mainly consist of crystalline dolomite with residual grain texture, and dolarenite of which the arene is mainly composed of muddy to micritic dolomite with some crystalline grain directionally aligned. The trace element indicates that the dolomites of Longwangmiao Formation may be related to the high salinity of sea water. The oxygen isotope values of crystalline dolomite and dolarenite are both similar to that of the Early Cambrian marine dolomites, and the carbon isotope values of every kind of dolomites are completely overlapped with that of the seawater in Early Cambrian, indicating the dolomitization fluid is originated from the Early Cambrian sea water. The restricted marine biological communities and a small amount of gypsum pseudonodule seen in muddy to micritic dolomite indicate that the sea water in Early Cambrian was restricted and evaporated. However, the general lack of massive evaporite mineral and gypsum karst breccia indicates that the salinity of sea water during dolomitization was lower than the value of gypsum's precipitation. The Longwangmiao Formation consists of several high-frequency sedimentary cycles, indicating frequent sea level changes. This study indicates that massive dolomitiza-tion may also occur in underwater palaeohigh in carbonate platform through the reflux of penesaline sea water driven by a combination of high- and low-frequency sea-level changes. This kind of dolomiti-zation can explain the generation of massive dolomites in the absence of evaporite precipitation, and further indicates that replacement dolomites can be produced by sea water with a wide range of salinity (normal, penesaline to hypersaline).

Key Words

penesaline sea water dolomitization Early Cambrian Longwangmiao Formation central Sichuan Basin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 41602166). This manuscript has been greatly improved from the comments by JES Editor Yao Ge and reviewer Li Zhaoqi. I would like to express my gratitude to the Sichuan Leading Academic Discipline Project for sponsoring the subject, to Mr. Wu Jianping for his assistance in the making of slices, and Xie Lin and Zeng Wei for their assistance in the identification of slices, and He Yun for his assistance in the analysis of trace elements from the state key laboratory of oil and gas reservoir geology and development engineering of Southwest Petroleum University, in addition, to Dr. Bai Xiaoliang for his constructive suggestion in the process of discussion.The final publication is available at Springer via http://dx.doi.org/10.1007/s12583-017-0761-5.

References Cited

  1. Adams, J. E., Rhodes, M. L., 1960. Dolomitization by Seepage Refluction. AAPG Bulletin, 44(12): 1912–1920. doi: 10.1306/0bda6263-16bd-11d7-8645000102c1865dGoogle Scholar
  2. Bodiozamani, K., 1987. The Dorag Dolomitization Model: Application to the Middle Ordovician of Wisconsin. Journal of Sedimentary Petrology, 43(4): 965–984Google Scholar
  3. Brand, U., Veizer, J., 1980. Chemical Diagenesis of a Multicomponent Carbonate System-1; Trace Element. Jour. Sed. Petrology, 50(4): 1219–1236. doi: 10.1306/212f7bb7-2b24-11d7-8648000102c1865dGoogle Scholar
  4. Derry, L. A., Keto, L. L., Jacobsen, S., et al., 1989. Sr Isotopic Variations of Upper Prot Erozoic Carbonates Form East Greenland and Scalbard. Geochimica et Cosmoc Himica Acta, 53(9): 2331–2339. doi: 10.1016/0016-7037(89)90355-4CrossRefGoogle Scholar
  5. Derry, L. A., Kaufaman, A. J., Jacobsen, S. B., 1992. Sedimentary Cycling and Environmental Change in the Late Proeterozoic: Evidence form Stable and Radiogenic Isotopes. Geochimica et Cosmochimica Acta, 56(3): 1317–1329. doi: 10.1016/0016-7037(92)90064-pCrossRefGoogle Scholar
  6. Derry, L. A., Brasier, M. D., Rozanov, A. Y., et al., 1994. Sr and C Isotopic in Lower Cambrian Carbonates from the Siberian Craton: A Paleoenvironmental Record during the Cambrian Explosion. Earth and Planetary Science Letters, 128(3–4): 671–681. doi: 10.1016/0012-821x(94)90178-3CrossRefGoogle Scholar
  7. Dickson, J.A.D., 1965. A Modified Staining Technique for Carbonates in Thin Section. Nature, 205(4971): 587. doi: 10.1038/205587a0CrossRefGoogle Scholar
  8. Duggan, J. P., Mountjoy, E. W., Stasiuk, L. D., 2001. Fault-Controlled Dolomitization at Swan Hills Simonette Oil Field (Devonian), Deep Basin West-Central Alberta. Canada. Sedimentology, 48(2): 301–323. doi: 10.1046/j.1365-3091.2001.00364.xCrossRefGoogle Scholar
  9. Eren, M., Kaplan, M. Y., Kadür, S., 2007. Petrography, Geochemistry and Origin of Lower Liassic Dolomites in the Aydnck Area, Mersin, Southern Turkey. Turkish Journal of Earth Sciences, 16: 339–362Google Scholar
  10. Feng, Z. Z., Pen, Y. M., Jin, Z. K., et al., 2002. Lithofacies Palaeogeography of the Early Cambrian in China. Journal of Palaeogeography, 4(1): 1–12 (in Chinese)Google Scholar
  11. Garven, G., 1995. Continental-Scale Groundwater Flow and Geological Processes. Annual Review of Earth and Planetary Sciences, 23(1): 89–117. doi: 10.1146/annurev.earth.23.1.89CrossRefGoogle Scholar
  12. Han, X.T., Bao, Z.Y., Xie, S.Y., 2016. Origin and Geochemical Characteristics of Dolomites in the Middle Permian Formation, SW Sichuan Basin, China. Earth Science, 41(1): 167–176Google Scholar
  13. Huang, S. J., 1990. Cathodoluminescence and Diagenetic Alteration Of Marine Carbonate Minerals Cathodoluminescence of Carbonate Minerals and Its Diagenetic Alteration. Sedimentary Geology & Tethyan Geology, (4): 9–15(in Chinese with English Abstract)Google Scholar
  14. Huang, S. J., 1992. Cathodoluminescence of Carbonate Minerals and Its Relationship with Fe, Mn Content. Journal of Mineralogy and Petrology, 12(4): 74–79(in Chinese)Google Scholar
  15. Huang, S. J., Li, X. N., Huang, K. K., et al., 2012. Authigemic Noncarbonated Minerals in Hydrothermal Dolomite of Middle Permian Qixia Formation in the West of Sichuan Basin, China. Journal of Chengdu university of Technology, 39(4): 343–352 (in Chinese)Google Scholar
  16. Huang, W. M., Liu, S. G., Wang, G. Z., et al., 2011. Geological Condition and Gas Reservoir Reatures in Lower Paleozoic in Sichuan Basin. Natural Gas Geoscience, 22(3): 465–476 (in Chinese with English Abstract)Google Scholar
  17. Illing, L. V., 1959. Deposition and Diagenesis of Some Upper Paleozoic Carbonate Sediments in Western Canada Proceedings of the Fifth World Petroleum Congress, Section 1, New York. 23–52Google Scholar
  18. Kaufman, J., 1994. The Role of Fluid Flow in Dolomitization: Constraints from Numerical Models. Annual Meeting Expanded Abstracts-American Association of Petroleum Geologists: 184Google Scholar
  19. Kaufman, A. J., Knoll, A. H., 1995. Neoproterozoic Variations in the C-Isotope Composition of Seawater: Stratigraphic and Biogeochemical Implications. Precambrian Research, 73(1–4): 27–49. doi: 10.1016/0301-9268(94)00070-8CrossRefGoogle Scholar
  20. Kaufman, A. J., Konll, A. H., Narbonne, G. M., 1997. Isotopes, Ice Ages and Terminal Proterozoic Earth History. Preceedings of the National Academy of Sciences, 94(13): 6600–6605. doi: 10.1073/pnas.94.13.6600CrossRefGoogle Scholar
  21. Kirkland, D. W., Evans, R. 1981. Source-Rock Potential of Evaporitic Environment. AAPG Bulletin, 65(2): 181–190. doi: 10.1306/2f91979c-16ce-11d7-8645000102c1865dGoogle Scholar
  22. Land, L. S., 1985. The Origin of Massive Dolomite. J. Geol. Educ., 33: 112–125CrossRefGoogle Scholar
  23. Li, T. S., 1992. The Characteristics of Sedimentary Rock and Reservoir of Oil and Gas of Cambrian System in Sichuan Basin. Mineralogy and Petrology, 12(3): 66–73 (in Chinese with English Abstract)Google Scholar
  24. Li, W., Yu, H. Q., Deng, H. B., 2012. Stratigraphic Division and Correlation and Sedimentary Characteristics of the Cambrian in Central-Southern Sichuan Basin. Petroleum Exploration and Development, 39(6): 681–690 (in Chinese)CrossRefGoogle Scholar
  25. Li, Z. Q., Goldstein, R. H., Franseen, E. K., 2013. Ascending Freshwater-Mesohaline Mixing: A New Scenario for Dolomitization. Journal of Sedimentary Research, 83(3): 277–283. doi: 10.2110/jsr.2013.24CrossRefGoogle Scholar
  26. Li, Z. Q., Goldstein, R. H., Franseen, E. K., 2014. Geochemical Record of Fluid Flow and Dolomitization of Carbonate Platforms: Ascending Freshwater-Mesohaline Mixing, Miocene of Spain. Geological Society, London, Special Publications, 406(1): 115–140. doi: 10.1144/sp406.3CrossRefGoogle Scholar
  27. Lucia, F. J., 1968. Sedimentation-Reflux Dolomitization Cycle. Geological Society of America, Special Paper: 134–135Google Scholar
  28. Major, R. P., Lloyd, R. M., Lucia, F. J., 1992. Oxygen Isotope Composition of Holocene Dolomite Formed in a Humid Hypersaline Setting. Geology, 20(7): 586–588. doi: 10.1130/0091-7613(1992)020<0586:oicohd>2.3.co;2CrossRefGoogle Scholar
  29. McKenzie, J. A., Hsü, K. J., Schneider, J. F., 1980. Movement of Subsurface Water under the Sabkha, Abu Dhabi, UAE and Its Relation to Evaporative Dolomite Genesis. In: Zenger, D. H., Dunham, J. B., Ethington, R.L., eds.. Concepts and Models of Dolomitization. SEPM Spec. Publ., 28: 11–20. doi: 10.2110/pec.80.28.0011CrossRefGoogle Scholar
  30. Melim, L. A., Scholle, P. A., 2002. Dolomitization of the Capitan Formation Forereef Facies (Permian, West Texas and New Mexico): Seepage reflux Revisited. Sedimentology, 49(6): 1207–1227. doi: 10.1046/j.1365-3091.2002.00492.xCrossRefGoogle Scholar
  31. Moore, T. S., Murray, R. W., Kurt, Z. A. C., et al., 2004. An Aerobic Methane Oxidation and the Formation of Dolomite. Earth and Planetary Science Letters, 229(1–2): 141–154. doi: 10.1016/j.epsl.2004.10.015CrossRefGoogle Scholar
  32. Oliver, J., 1986. Fluids Expelled Tectonically from Orogenic Belts: Their Role in Hydrocarbon Migration and Other Geologic Phenomena. Geology, 14(2): 99–102. doi: 10.1130/0091-7613(1986)14<99:fetfob>2.0.co;2CrossRefGoogle Scholar
  33. Potma, K., Weissenberger, J. A. W., Wong, P. K., et al., 2001. Toward a Sequence Stratigraphic Framework for the Frasnian of the Western Canada Basin. Bulletin of Canadian Petroleum Geology, 49(1): 37–85. doi: 10.2113/49.1.37CrossRefGoogle Scholar
  34. Purser, B., Tucker, M., Zenger, D., 1994. Problems, Progress and Future Research Concerning Dolomites and Dolomitization. In: Purser, B., Tucker M., Zenger, D., eds., Dolomites: A Volume in Honour of Dolomieu. Spec. Publ. Int. Assoc. Sedimentol, 21: 3–20CrossRefGoogle Scholar
  35. Qing, H., 1998. Petrography and Geochemistry of Early-Stage, Fine-and Medium-Crystalline Dolomites in the Middle Devonian Presqu'ile Barrier at Pine Point, Canada. Sedimentology, 45(2): 433–446. doi: 10.1046/j.1365-3091.1998.0154f.xCrossRefGoogle Scholar
  36. Qing, H., Bosence, D. W. J., Rose, E. P. F., 2001. Dolomitization by Penesaline Sea Water in Early Jurassic Peritidal Platform Carbonates, Gibraltar, Western Mediterranean. Sedimentology, 48(1): 153–163. doi: 10.1046/j.1365-3091.2001.00361.xCrossRefGoogle Scholar
  37. Rameil, N., 2008. Early Diagenetic Dolomitization and Dedolomitization of Late Jurassic and Earliest Cretaceous Platform Carbonates: A Case Study from the Jura Mountains (NW Switzerland, E France). Sedimentary Geology, 212(1–4): 70–85. doi: 10.1016/j.sedgeo.2008.10.004CrossRefGoogle Scholar
  38. Shield, M. J., Brady, P. V., 1995. Mass Balance and Fluid Flow Constraints on Regional Scale Dolomitization, Late Devonian, Western Canada Sedimentary Basin. Bulletin of Canadian Petroleum Geology, 43(4): 371–392Google Scholar
  39. Simms, M., 1984. Dolomitization by Groundwater-Flow Systems in Carbonate Platforms. Transactions-Gulf Coast Association of Geological Societies, 34: 411–420Google Scholar
  40. Song, W. H., 1996. Research on Reservoir Formed Condition of Large-Medium Gas Field of Leshan-Longnvsi Palaeohigh. Natural Gas Industry, 16(supp): 13–26 (in Chinese with English Abstract)Google Scholar
  41. Sun, S. Q., 1994. A Reappraisal of Dolomite Abundance and Occurrence in the Phanerozoic. J. Sed. Res., 64(2a): 396–404. doi: 10.1306/d4267db1-2b26-11d7-8648000102c1865dCrossRefGoogle Scholar
  42. Sun, S. Q., 1995. Dolomite Reservoirs: Porosity Evolution and Reservoir Characteristics. Am. Assoc. Petrol. Geol. Bull., 79(2): 186–204. doi: 10.1306/8d2b14ee-171e-11d7-8645000102c1865dGoogle Scholar
  43. Tang, H., Tan, X. C., Liu, H., et al., 2014. Genesis and Dolomitization of “Khali” Powder Crystal Dolomite in Triassic Jialingjiang Formation, Moxi Gas Field, Central Sichuan Basin, SW China. Petroleum Exploration and Development, 41(4): 553–562CrossRefGoogle Scholar
  44. Veizer, J., Bruckschen, P., Pawellek, F., et al., 1997. Oxygen Isotope Evolution of Phanerozoic Seawater. Palaeogeogr., Palaeoclimatol., Palaeoecol., 132(1–4): 159–172. doi: 10.1016/s0031-0182(97)00052-7CrossRefGoogle Scholar
  45. Veizer, J., 1983. Chemical Diagenesis of Carbonates: Theory and Application. In: Arthur, M. A., Anderson, T. F., Kaplan I. R., et al., eds. Stable Isotopes in Sedimentary Geology. SEPM Short Course, 10: 3–100Google Scholar
  46. Warren, J., 2000. Dolomite: Occurrence, Evolution and Economically Important Associations. Earth Science Reviews, 52(1–3): 1–81. doi: 10.1016/s0012-8252(00)00022-2CrossRefGoogle Scholar
  47. Wang, Z. C., Zhao, W. Z., Zhang, L., et al., 2002. Structure Sequence and Gas Exploration in Sichuan Basin. Petroleum Industry Press, Beijing. (in Chinese)Google Scholar
  48. Wu, K. Y., Zhang, T. S., Yang, Y., et al., 2016. Contribution of Oxygenic Photosynthesis to Palaeo–Oceanic Organic Carbon Sink Fluxes in Early Cambrian Upper Yangtze Shallow Sea: Evidence from Black Shale Record. Journal of Earth Science, 27(2): 211–224CrossRefGoogle Scholar
  49. Xu, S. Q., 1999. Conditions of Forming Reservoirs in Sinian–Cambrian of Caledonian Ancient Uplift. Natural Gas Industry, 19(6): 7–10(in Chinese)Google Scholar
  50. Yang, X. F., Wang, X. Z., Tang, H., et al., 2016. Reservoir Characteristics and Main Controlling Factors of the Longwangmiao Formation in the Moxi Area, Central Sichuan Basin, China. Arabian Journal of Geoscience, 9(3): 217. doi: 10.1007/s12517-015-2066-2CrossRefGoogle Scholar
  51. Yao, G. S., Zhou, J. G., Zou, W. H., et al., 2013. Characteristics and Distribution Rule of Lower Cambrian Longwangmiao Grain Beach in Sichuan Basin. Marine Origin Petroleum Geology, 18(4): 1–8 (in Chinese with English Abstract)Google Scholar
  52. You, X. L., Sun, S., Zhu, J. Q., 2014. Significance of Fossilized Microbes from the Cambrian Stromatolites in the Tarim Basin, Northwest China. Science-China: Earth Sciences, 57(12): 2901–2913.doi: 10.1007/s11430-014-4935-zCrossRefGoogle Scholar
  53. Zeng, W., Huang, X. P., Yang, Y., et al., 2007. The Origin and Distribution of Dolostone in Feixianguan Formation in Lower Trassic Series, Northeast Sichuan. Journal of Southwest Petroleum University, 29(1): 19–22 (in Chinese with English Abstract)Google Scholar
  54. Zhao, W. Z., Shen, A. J., Zheng, J. F., et al., 2012. A Discussion on the Pore Space Origin of Dolomite Reservoirs from Tarim, Sichuan and Ordos Basin, and Its Implication on Reservoirs Prediction. Science in China: Earth Sciences, 38(6): 641–651 (in Chinese)Google Scholar
  55. Zheng, J. F., Shen, A. J., Liu, Y. F., et al., 2013. Main Controlling Factors and Characteristics of Cambrian Dolomite Reservoirs Related to Evaporite in Tarim Basin. Acta Sedimentologica Sinica, 31(1): 89–98 (in Chinese with English Abstract)Google Scholar
  56. Zhu, X. M., 2008. Sedimentary Petrology (the 4th Edition). Petroleum Industry Press, Beijing (in Chinese)Google Scholar
  57. Zou, C. N., Xu, C. C., Wang, Z. C., et al., 2011. Geological Characteristics and Forming Conditions of the Large Platform Margin Reef-Shoal Gas Province in the Sichuan Basin. Petroleum Exploration and Development, 38(6): 641–651 (in Chinese with English Abstract)CrossRefGoogle Scholar

Copyright information

© China University of Geosciences and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Xuefei Yang
    • 1
    • 2
  • Hao Tang
    • 1
    • 2
  • Xingzhi Wang
    • 1
    • 2
  • Yaping Wang
    • 2
  • Yueming Yang
    • 3
  1. 1.State Key Laboratory of Oil and Gas Reservoir Geology and ExploitationSouthwest Petroleum UniversityChengduChina
  2. 2.School of Geoscience and TechnologySouthwest Petroleum UniversityChengduChina
  3. 3.Research Institute of Exploration and DevelopmentSouthwest Oil and Gas Field Company, PetroChinaChengduChina

Personalised recommendations