Advertisement

Journal of Earth Science

, Volume 28, Issue 2, pp 229–240 | Cite as

Petrogenesis of Late Cretaceous Volcanism in Kazhaba Area and its relationship with mantle plume activity of Reunion hotspot

Petrology and Petrogeochemistry

Abstract

Basaltic pillow lavas near the Kazhaba village in Balochistan are found in the tectonic slivers of the Bagh complex: the melange zone beneath the Muslim Bagh ophiolite complex. These vol-canics are mainly represented by alkali basalts. The petrography and chemistry suggest that these volcanic rocks belong to mildly to strongly alkaline, intra-plate volcanic rock series. Their low Mg# and low Cr, Ni and Co contents suggest that the parent magma of these volcanics was not directly derived from a partially melted mantle source, but resulted fractionation in an upper level magma chamber, en-route to eruption. Their LILE and HFSE, enriched primordial mantle-normalized patterns with marked positive Nb anomalies further confirm their within-plate geochemical signatures and are consistent with an enriched mantle source. Their highly enriched LREE patterns and high (La/Yb)N and (Ce/Yb)N ratios suggest a partially melted garnet-lherzolite parent magma source. The Zr versus Zr/Y studies suggest that these volcanics were derived from about 15% partially melted enriched mantle source. It is suggested that these Late Cretaceous intra-plate volcanics may represent the mantle plume activity of the Reunion hotspot, and were erupted during the passage of Ceno-Tethys Ocean floor prior to the passage of Indian Plate over it.

Key Words

Late Cretaceous Kazhabavolcanics Balochistan Pakistan 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors are indebted to S. Hassan Gauhar, Former Director General, Geological Survey of Pakistan, for the arrangement of funds for field and laboratory research. The final publication is available at Springer via http://dx.doi.org/10.1007/s12583-017-0758-0

References Cited

  1. Baker, B. H., 1987. Outline of the Petrology of the Kenya Rift Alkaline Province. In: Fitten, J. G. and Upton, B. G. J. eds., Alkaline Igneous Rocks, Balckwell, Oxford. 30(1): 293–312. doi: 10.1144/gsl.sp.1987.030.01.14Google Scholar
  2. Backmann, J., Duncan, R. A., 1989. Proceedings of the Ocean Drilling Program, 115 Initial Reports. 1085Google Scholar
  3. Basaltic Volcanism Study Project 1981. Basaltic Volcanism on the Terrestrial Planets. New York: Pergamon Press. 1286.Google Scholar
  4. Boulin, J., 1990. Neocimmerian Events in Central and Western Afghanistan. Tectonophysics, 175(4): 285–315. doi: 10.1016/0040-1951(90)90177-aCrossRefGoogle Scholar
  5. Brookfield, M. E., 1993. The Himalayan Passive Margin from Precambrian to Cretaceous Times. Sedimentary Geology, 84(1–4): 1–35. doi: 10.1016/0037-0738(93)90042-4CrossRefGoogle Scholar
  6. Caroff, M., Maury, R. C., Guille, G., Cotten, J., 1997. Partial Melting below Tubuai (Austral Islands, French Polynesia). Contributions to Mineralogy and Petrology, 127(4): 369–382.doi: 10.1007/s004100050286CrossRefGoogle Scholar
  7. Chen, J. J., Fu, L. B., Wei, J. H., et al., 2016. Geochemical Characteristics of Late Ordovician Granodiorite in Gouli Area, Eastern Kunlun Orogenic Belt, Qinghai Province: Implications on the Evolution of Proto-Tethys Ocean. Earth Science, 41(11): 1863–1882Google Scholar
  8. Deitz R. S., Holden J. C., 1970, The Breakup of Pangaea. Scientific American 223: 30–41CrossRefGoogle Scholar
  9. Duncan, R. A., Pyle, D. G., 1988. Rapid Eruption of Deccan Flood Basalt at the Cretaceous/Tertary Boundary. Nature, 333(6176): 841–843. doi: 10.1038/333841a0CrossRefGoogle Scholar
  10. Dewey, J. F., Bird, J. M., 1970. Mountain Belts and the New Global Tectonics. Journal of Geophysical Research, 75(14): 2625–2647.doi: 10.1029/jb075i014p02625CrossRefGoogle Scholar
  11. Fisk, M. R., Upton, B. G. J. Ford, C.E., 1988. Geochemical and Experimental Study of the Genesis of Magmas of Reunion Island, Indian Ocean. Journal of Geophysical Research, 93(B5): 4933–4950. doi: 10.1029/jb093ib05p04933CrossRefGoogle Scholar
  12. Floyd, P. A. and Winchester, J. A., 1975. Magma Types and Tectonic Setting Discrimination Using Immobile Elements. Earth and Planetary Science Letter, 27(2): 211–218.doi: 10.1016/0012-821x(75)90031-xCrossRefGoogle Scholar
  13. Floyd, P. A., 1991. Oceanic Islands and Seamounts. In: Foyd, P. A. ed., Blackie, Glasgow and London. 455Google Scholar
  14. Frey, F. A., Green, D. H. Roy, S. D., 1978. Integrated Model for Basalt Petrogenesis: A Study of Quartz Tholeiites to Olivine Melilite from Southeastern Australia, Utilizing Geochemical and Experimental Petrological Data. Journal of Petrolology, 19(3): 463–513. doi: 10.1093/petrology/19.3.463CrossRefGoogle Scholar
  15. Fyfe, W. S., 1976. Hydrosphere and Continental Crust. Geoscience, 3(2): 255–268Google Scholar
  16. Gansser, A., 1979. Reconnaissance Visit to the Ophiolites in Baluchistan. In: Farah, A., DeJong, K. A. eds., Geodynamics of Pakistan. 193–213Google Scholar
  17. Gill, J. B., 1981, Orogenic Andesites and Plate Tectonics: Springer, Berlin, 189.CrossRefGoogle Scholar
  18. Govindaraju, K., 1989. Working Group on Analytical Standards of Minerals, Ores and Rocks. Geostandards Newsletter, Special Issue, France, 114Google Scholar
  19. Green, D. H., 1973. Experimental Studies on a Modal Upper Mantle Composition at High Pressure under Water Saturated and Water Undersaturated Condtions. Canadian Mineralogist, 19(1): 37–53Google Scholar
  20. Hanson, G. N. and Langmuir, C. H., 1978. Modelling of Major Elements in Mantle-Melts Systems Using Trace Element Approaches. Geochimca et Cosmochem Acta, 42(6): 725–742. doi: 10.1016/0016-7037(78)90090-xCrossRefGoogle Scholar
  21. Humphris, S. E., Thompson, G., Schilling, J. G. et al., 1985, Petrological and Geochemical Variation along the Mid Atlantic Ridge between 46º S and 32º S: Influence of Tristen da Cunha Mantle Plume. Geochem. Acta, 49(6): 1445–1464. doi: 10.1016/0016-7037(85)90294-7CrossRefGoogle Scholar
  22. Khan, W., McCormick, G. R. Reagen, M. K., 1999, Parh Group Basalts of Northeastern Balochistan, Pakistan: Precursors to the Deccan Traps. Special Paper–Geological Society of America, 2(9): 1916–1923Google Scholar
  23. Kimura, K., Mengal, J. M., Siddiqui, M. R.H., et al., 1993. Geology of the Muslim Bagh Ophiolite and Associated Bagh Complex in Northwestern Balochistan, Pakistan. Proceedings of Geoscience Colloquium. 5: 36Google Scholar
  24. Kojima, S., Naka, T., Kimura, K., et al., 1993. Mesozoic Radiolarians from the Bagh Complex in the Muslim Bagh Area Pakistan: Their Significance in Reconstructing the Geologic History of Ophiolites along the Neo Tethys Suture Zone. Bulletin Geological Survey of Japan, 45(2): 63–97Google Scholar
  25. Le Bas, M. J., Le Maitre, R. W., Streckeisen, A. and Zanettin, B., 1986. A Chemical Classification of Volcanic Rocks Based on the Total Alkali Silica Diagram. Journal of Petrology, 27(3): 745–750.doi: 10.1093/petrology/27.3.745CrossRefGoogle Scholar
  26. Le Maitre, R. W., Bateman, P., Dudek, A., et al., 1989. A Classification of Igneous Rocks and Glossary of Terms. In: Le Maitre, R. W., ed., Recommendations of the International Union of Geological Sciences Subcommissionon the Systematics of Igneous Rocks: Blackwell Sciety. Publication. 193Google Scholar
  27. Luhr, J. F., Aranda–Gómez, J. J., Housh, T.B., 1995. San Quintín Volcanic Field, Baja California Norte, México: Geology, Petrology, and Geochemistry. Journal of Geophysical Research: Solid Earth, 100(B6): 10353–10380. doi: 10.1029/95jb00037CrossRefGoogle Scholar
  28. California Norte, México. Geology, Petrology and Geochemistry. Journal of Geophysical Research, 100(B7): 10353–10380Google Scholar
  29. McCormick, G. R., 1985. Preliminary Study of the Volcanic Rocks of the South Tethyan, Suture in Baluchistan, Pakistan. Acta Mineralogica, 1: 1–29Google Scholar
  30. McCormick, G. R., 1991. Origin of Volcanics in the Tethyan Zone of Pakistan. In: Peters, T. J., Niwlas, A., Coleman, R. G., et al., eds., Ophiolite Genesis and Evolution of the Oceanic Lithosphere. Ministry of Petroleum and Minerals Sultanate of Oman, Muscat 715–722Google Scholar
  31. Mengal, J. M. Siddiqui, R. H., 1993. Geological Map of Bagh Quadrangle, Killa Safullah District, Balochistan, Pakistan. Geol, Survey of Pakistan Map Series.Google Scholar
  32. Melson, W. T., Thompson, G. Van Andel, T. H., 1968. Volcanism and Metamorphism in the Mid-Atlantic Ridge 22° N Latitude. Journal of Geophysical Research, 73(18): 5925–5941. doi: 10.1029/jb073i018p05925CrossRefGoogle Scholar
  33. Meschede, M., 1986. A Method of Discriminating between Different Types of Mid–Oceanic Ridge Basalts and Continental Tholeiites with the Nb-Zr-Y Diagram. Chemical Geology, 56(3): 207–218.doi: 10.1016/0009-2541(86)90004-5CrossRefGoogle Scholar
  34. Metcalfe, I., 1995. Gondwana Dispersion and Asian Accretion. Journal of Geology, B: 223–266.doi: 10.1016/s0899-5362(99)90074-xGoogle Scholar
  35. Naka, T., Kimura, K., Mengal J. M., Siddiqui, R. H., Kojima, S., Sawada, Y., 1996, Mesozoic Sedimentary–Igneous Complex, Bagh Complex in Muslim Bagh Area, Pakistan. Proceedings of Geoscience Colloquium. 16: 47–94Google Scholar
  36. Otsuki, K., Anwar, M., Mengal, J. M., et al., 1989. Breakup of Gondwanaland and Emplacement of Ophiolite Complex in Muslim Bagh Area Balochistan, Pakistan. Hiroshima University Special. Publication. 33–57Google Scholar
  37. Pearce, J. A. Cann, J. R., 1973. Tectonic Setting of Basic Volcanic Rocks Determined Using Trace Elements Analysis. Earth and Planetary Science Letters, 19(2): 290–300. doi: 10.1016/0012-821x(73)90129-5CrossRefGoogle Scholar
  38. Pearce, J. A., Norry, M., 1979. Petrogenetic Implications of Ti, Zr, Y and Nb Variation in Volcanic Rocks. Contribution to Mineralogy and Petrology, 69(1): 33–47. doi: 10.1007/bf00375192CrossRefGoogle Scholar
  39. Pearce, J. A., 1982. Trace Elements Characteristics of Lavas from Destructive Plate Boundaries. In: Throp, R. S., ed., Andesites: Orogenic Andesites and Related Rocks. John Wiley and Sons, New York. 525–548Google Scholar
  40. Pearce, J. A., 1983. The Role of Subcontinental Lithosphere in the Magma Genesis at Destructive Plate Margin, In: Hawkesworth, C. J., Norry, M. J. eds., Continental Basalts and Mantle Xenoliths. Natwich Shiva, 230–249Google Scholar
  41. Perfit, M. R., Gust, D. A., Bence, A. E., et al., 1980. Chemical Characteristics of Island Arc Basalts: Implications for Mantle Sources. Chemical Geology, 30(3): 227–256. doi: 10.1016/0009-2541(80)90107-2CrossRefGoogle Scholar
  42. Price, R, C., Johnson, R. W., Gray, C. M., et al., 1985. Geochemistry of Phonolites and Trachytes from the Summit Region of Mt. Kenya. Contribution to Mineralogy and Petrology, 89(4): 394–409. doi: 10.1007/bf00381560CrossRefGoogle Scholar
  43. Saunders, A. D. Tarney, J., 1991. Back-Arc Basins. In: Floyd. P.A. ed., Oceanic Basalts, Blackie, London. 219–263Google Scholar
  44. Schawarzer, R. R. Roger, J. J. W., 1974. A Worldwide Comparison of Alkaline-Olivine Basalt and Their Differentiation Trends. Earth and Planetary Science Letter, 23(3): 286–296. doi: 10.1016/0012-821x(74)90117-4CrossRefGoogle Scholar
  45. Sawada, Y., Nagao, K., Siddiqui, R.H. et al., 1995. K-Ar Ages of Mesozoic Igneous and Metamorphic Rocks from the Muslim Bagh Area, Pakistan. Proc.Geosc. Coll. 12: 73–90Google Scholar
  46. Sengör, A. M. C., Altinar, D., Cin, A., et al., 1988. Origin and Assembly of Tethyside Orogenic Collage at the Expence of Gondwanaland, 37(1): 119–181. doi: 10.1144/gsl.sp.1988.037.01.09Google Scholar
  47. Shervais, J. W., 1982. Ti Versus V Plots and the Petogenesis of Modern and Ophiolitic Lavas. Earth and Planetary Science Letters, 59(1): 101–108. doi: 10.1016/0012-821x(82)90120-0CrossRefGoogle Scholar
  48. Siddiqui, R. H., Brohi, I. A. Haidar, N. 2010. Geochemistry, Petrogenesis and Crustal Contamination of Hotspot Related Volcanism on the North Western Margin of Indian Plate. Sindh University Research Journal, 42(2): 15–34Google Scholar
  49. Siddiqui, R.H., Mengal, J. M., Hoshino, K., et al., 2011, Back-Arc Basin Signatures from the Sheeted Dykes of Muslim Bagh Ophiolite Complex, Balochistan, Pakistan. Sindh University Research Journal, 43(1): 51–62Google Scholar
  50. Siddiqui, R. H., Jan, M. Q., Kakar M. I., et al., 2017. Petrogenesis of Middle Triassic Volcaniclastic Rocks from Balochistan, Pakistan: Implications for the Break-Up of Gondwanaland. Journal of Earth Science, 28(2): 218–228. doi: 10.1007/s12583-016-0911-xCrossRefGoogle Scholar
  51. Sinha, A. K. Mishra, M., 1992. Plume Activity and Seamounts in Neo-Tethys: Evidence Supported by Geochemical and Geochronological Data. Jour. Hima. Geol. 3(1): 91–96Google Scholar
  52. Stocklin, J., 1989. Tethys Evolution in the Afghanistan-Pamir-Pakistan Region. In: Sengör, ed., Tectonic Evolution of Tethys Region. Kluwer Academic Publishers, 241–264CrossRefGoogle Scholar
  53. Sun, S. S. McDonough, W. F., 1989. Chemical and Isotopic Systematics of Ocean Basalt, Implication for Mantle Composition and Processes. In: Saunders, A. D., Tarny, M. J., eds., Magmatism in the Ocean Basins. Geol. Soc. London, Spec. Pub., 42: 313–345. doi: 10.1144/gsl.sp.1989.042.01.19Google Scholar
  54. Tatsumi, Y. Eggins, S., 1995. Subduction Zone Magmatism. Blackwell Science, Oxford, England. 211Google Scholar
  55. Veevers, J. J., 1995. Emergent Long Lived Gondwanaland Vs, Submergent, Short Lived Laurasia: Supercontinentaland Pan-African Heat Imparts Long-Term Buoyancy by Mafic under Plating. Geology, 23(12): 1133–1138. doi: 10.1130/0091-7613(1995)023<1131:ellgvs>2.3.co;2CrossRefGoogle Scholar
  56. Weaver, B. L., Tarney, J., Windley, B., 1981. Geochemistry and Petrogenesis of the Fiskenaesset Anorthosite Complex Southern West Greenland: Nature of the Parent Magma. Geochem. Cosmochem. Acta, 45(5): 711–725. doi: 10.1016/0016-7037(81)90044-2CrossRefGoogle Scholar
  57. Weaver, B.L., Wood, D. A., Tarney, J. et al., 1987. Geochemistry of Ocean Island Basalt from the South Atlantic, Ascension, Bouvet, St. Helena, Gongh and Tristen da Cunha. Geol. Soc. London, Spec. Pub., 568: 253–268. doi: 10.1144/gsl.sp.1987.030.01.11CrossRefGoogle Scholar
  58. Whitemarsh, R. B., 1974. Summary of General Features of Arabian Sea and Red Sea Cenozoic History. Based on Leg 23 Cores. Init. Rep. DSDP, 23: 115–1123Google Scholar
  59. Wilkinson, J. F. G., Le Maitre, R. W., 1987. Upper Mantle Amphiboles and Micas and TiO2, K2O and P2O5 Abundances and 100×Mg/(Mg+Fe+2) Ratios of Common Basalts and Undeleted Mantle Compositions. Journal of Petrology, 28(1): 37–73. doi: 10.1093/petrology/28.1.37CrossRefGoogle Scholar
  60. Wilson, M., 1989. Igneous Petrogenesis. Unwin and Hyman, London, 466.CrossRefGoogle Scholar
  61. Winchester, J. A., Floyd, P. A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20(C): 325–343. doi: 10.1016/0009-2541(77)90057-2CrossRefGoogle Scholar
  62. Zaman, H., Torii, M., 1999. Paleomagnetic Study of Cretaceous Red Beds from the Eastern Hindukush Ranges, Northern Pakistan, Paleoarc Construction of the Kohistan-Karakoram Composite Unit before the India-Asia Collision. Geophysical Journal International, 136(3): 719–738. doi: 10.1046/j.1365-246x.1999.00757.xCrossRefGoogle Scholar

Copyright information

© China University of Geosciences and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Balochistan University of Information Technology, Engineering and Management ScienceQuettaPakistan
  2. 2.School of Earth SciencesChina University of GeosciencesWuhanChina

Personalised recommendations