Advertisement

Journal of Earth Science

, Volume 28, Issue 2, pp 333–346 | Cite as

Oxygen isotope clue to migration of dolomitizing fluid as exampled by the Changxing Formation dolomite at Panlongdong, northeastern Sichuan

  • Rui Zhao
  • Yasheng Wu
  • Hongxia Jiang
  • Qingsong Liu
Sedimentology and Basin Dynamics

Abstract

The Upper Permian Changxing dolomite reservoirs serves as one of the most important gas and oil reservoirs in the NE Sichuan Basin. Determining the dolomitizing fluid’s pathway is regarded as the key to solve the “dolomite problem” and further petroleum exploration. Outcrop samples from Upper Permian Changhsingian Panlongdong Section were studied using oxygen isotopic analysis, cathodoluminescence (CL) and major element analysis, in an attempt to determine the migration path way and properties of the dolomitizing fluid. Of the Changxing dolomite, the δ 18O values ranged from -3.494‰ to -5.481‰, which decreased from the top layer to the bottom in the section; the MgO contents varied from 9.24% to 21.43%, CaO contents from 28.65% to 39.87%, the CaO/MgO ratio from 1.40 to 4.31 and the MnO contents from 0.004% to 0.009 8%. The MgO contents showed a downwardly decreasing trend in the section, while the CaO/MgO showed an opposite rule. All of the dolomites looked dull or dark when they were exposed to the electron beam of the cathodoluminescence device. None of the fine- to medium grained dolomite showed a banded structure. Given that dolomitizing fluid’s salinity decreased during the dolomitization process in its pathway, we concluded that the dolomitizing fluid migrated downwardly in Changxing Formation after excluding the possibility of deep burial or meteoric-marine mixing-water influences. As the dolomitizing fluid’s pathway has always been difficult to be determined in highly dolomitized Formation, this study showed an important application of oxygen isotope values in resolving this problem.

Key Words

Sichuan Basin Changxing Formation dolomitization oxygen isotope origin migrating direction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

Lab work was assisted with Wang Xu (O and C isotope analysis) from Institute of Geology and Geophysics, CAS. This study was supported by the National Natural Science Foundation of China (Nos. 40472015, 40802001, and 41372121), the State Key Laboratory of Oil/Gas Reservoir Geology and Exploitation at CDUT (PL200801). The final publication is available at Springer via http://dx.doi.org/10.1007/s12583-017-0724-x.

References Cited

  1. Allen, J. R., Wiggins, W. D., 1993. Dolomite Reservoirs: Geochemical Techniques for Evaluating Origin and Distribution. AAPG Continuing Education Course Note Series, 36: 26–129Google Scholar
  2. Anderson, T. F., Arthur, M. A., 1983. Stable Isotope of Oxygen and Carbon and Their Application to Sedimentologic and Paleoenvironmental Problems. Society of Economic Paleontologists and Mineralogists, Short Course, 10: 1–151. doi: 10.2110/scn.83.01.0000Google Scholar
  3. Baum, G. R., Harris, W. B., Dres, P. E., 1985. Origin of Dolomite in the Eocene Castle Hayne Limestone, North Carolina. Journal of Sedimentary Petrology, 55(4): 506–517. doi: 10.1306/212f8715-2b24-11d7-8648000102c1865dGoogle Scholar
  4. Benway, H. M., Mix, A. C., 2004. Oxygen Isotopes, Upper-Ocean Salinity, and Precipitation Sources in the Eastern Tropical Pacific. Earth and Planetary Science Letters, 224(3–4): 493–507. doi: 10.1016/j.epsl.2004.05.014CrossRefGoogle Scholar
  5. Budd, D. A., 1997. Cenozoic Dolomites of Carbonate Islands: Their Attributes and Origin. Earth-Science Reviews, 42(1–2): 1–47. doi: 10.1016/s0012-8252(96)00051-7CrossRefGoogle Scholar
  6. Buggisch, W., Keller, M., Lehnert, O., 2003. Carbon Isotope Record pf Late Cambrian to Early Ordovician Carbonates of the Argentine Precordillera. Palaeogeogr Palaeoclimatol Palaeoecol, 195(3–4): 357–373. doi: 10.1016/s0031-0182(03)00365-1CrossRefGoogle Scholar
  7. Buschkuehle, B. E., Machel, H. G., 2002. Diagenesis and Paleofluid Flow in the Devonian Southesk-Cairn Carbonate Complex in Alberta, Canada. Mar. Petrol. Geol., 19(3): 219–227. doi: 10.1016/s0264-8172(02)00014-4CrossRefGoogle Scholar
  8. Chen, Q., Hu, W. X., Li, Q., 2012. Characteristics and Genesis of Dolomitization in Changxing and Feixianguan Formations in Panlongdong, Northeastern Sichuan Basin. Oil & Gas Geology, 33(1): 84–93 (in Chinese with English Abstract)Google Scholar
  9. Cheng, X. Z., Li, P. P., Zou, H. Y., et al., 2013. Chen G. Geochemical Characteristics and Fluid Origin of the Changxing Formation Dolomitic Rock in the Xinglongchang Area of East Sichuan Basin. Acta Geologica Sinica, 87(7): 1031–1040 (in Chinese with English Abstract)Google Scholar
  10. Delaygue, G., Jouzel, J., Dutay, J. C., 2000. Oxygen 18-Salinity Relationship Simulated by an Oceanic General Circulation Model. Earth and Planetary Science Letters, 178(1–2): 113–123. doi: 10.1016/s0012-821x(00)00073-xCrossRefGoogle Scholar
  11. Derry, L. A., Kaufman, A. J., Jacobsen, S. B., 1992. Sedimentary Cycling and Environmental Chang in the Late Proterozoic: Evidence from Stable and Radiogenic Isotopes. Geochim. Cosmochim. Acta., 56: 1317–1329. doi: 10.1016/0016-7037(92)90064-pCrossRefGoogle Scholar
  12. Dickson, J. A. D., Coleman, M. L., 2010. Changes in Carbon and Oxygen Isotopic Composition during Limestone Diagenesis. Sedimentology, 27(1): 107–118. doi: 10.1111/j.1365-3091.1980.tb01161.xCrossRefGoogle Scholar
  13. Dix, G. R., Sharma, S., Al-Aasm, I. S., et al., 2010. Hydrothermal Dolomite in the Timiskaming Outlier, Central Canadian Shield: Proxy for Late Ordovician Tectonic Activity. Am. J. Sci., 310(5): 405–423. doi: 10.2475/05.2010.03CrossRefGoogle Scholar
  14. Dong, S. F., Chen, D. Z., Qing, H. R., 2013. In Situ Stable Isotopic Constraints on Dolomitizing Fluids for the Hydrothermally-Originated Saddle Dolomites at Keping, Tarim Basin. Chin. Sci. Bull., 58(23): 2877–2882 (in Chinese with English Abstract)CrossRefGoogle Scholar
  15. Dong, X., Zheng, R. C., Wang, J., et al., 2010. Reservoir Sedimentological Characteristics of the Upper Permian Changxing Formation in Kaijiang-Liangping Area. Acta Petrologica et Mineralogica, 29(1): 67–78 (in Chinese with English Abstract)Google Scholar
  16. Driese, S. G., Mora, C. L., 1993. Physico-Chemical Environment of Pedogenic Carbonate Formation in Devonian Vertic Palaeosols, Central Appalachians, U.S.A.. Sedimentology, 40: 199–216. doi: 10.1111/j.1365-3091.1993.tb01761.xCrossRefGoogle Scholar
  17. Eren, M., Kaplan, M. Y., Kadir, S., 2007. Petrography, Geochemistry and Origin of Lower Liassic Dolomites in the Aydýncýk Area, Mersin, Southern Turkey. Turkish Journal of Earth Sciences, 16: 339–362Google Scholar
  18. Fan, J. S., Wu, Y. S., 2002. Restudies on Permian Reefs in Eastern Sichuan, China. Oil & Gas Geology, 23(1): 12–18 (in Chinese with English Abstract)Google Scholar
  19. Friedman, I., O’Neil, J. R., 1977. Compilation of Stable Isotope Fractionation Factors of Geochemical Interest. U.S. Geol. Surv. Prof. Paper, 440Google Scholar
  20. Fritz, P., Smith, D. G. W., 1970. The Isotopic Composition of Secondary Dolomites. Geochimica Cosmochimica Acta, 34: 1161–1173. doi: 10.1016/0016-7037(70)90056-6CrossRefGoogle Scholar
  21. Geske, A., Zorlu, J., Richter, D. K., et al., 2012. Impact of Diagenesis and Low Grade Metamorphosis on Isotope (Δ26Mg, Δ13C, Δ18O and 87Sr/86Sr) and Elemental (Ca, Mg, Mn, Fe and Sr) Signatures of Triassic Sabkha Dolomites. Chemical Geology, 332–333: 45–64CrossRefGoogle Scholar
  22. Gonfiantini, R., 1986. Environmental Isotopes in Lake Studies. In: Fritz, P., Fontes, J. C., eds., Handbook of Environmental Isotope Geochemistry. Elsevier, Amsterdam. 113–168Google Scholar
  23. Haas, J., Budai, T., Gyori, O., et al., 2014. Similarities and Differences in the Dolomitization History of Two Coeval Middle Triassic Carbonate Platforms, Balaton Highland, Hungary. Facies, 60: 581–602. doi: 10.1007/s10347-014-0397-1CrossRefGoogle Scholar
  24. Han, X. T., Bao, Z. Y., Xie, S. Y., 2016. Origin and Geochemical Characteristics of Dolomites in the Middle Permian Formation, SW Sichuan Basin, China. Earth Science, 41(1): 167–176Google Scholar
  25. Hitzman, M., Allan, J., Beaty, D., 1998. Regional Dolomitization of the Waulsortian Limestone in Southeastern Ireland: Evidence of Large-Scale Fluid Flow Driven by the Hercynian Orogeny. Geology, 26: 547–550. doi: 10.1130/0091-7613(1998)026<0547:rdotwl>2.3.co;2CrossRefGoogle Scholar
  26. Huang, S. J., Qing, H. R., Pei, C. R., et al., 2006. Strontium Concentration, Isotope Composition and Dolomitization Fluids, in the Feixianguan Formation of Triassic, Eastern Sichuan of China. Acta Petrologica Sinica, 22: 2123–2132 (in Chinese with English Abstract)Google Scholar
  27. Huang, S. J., Huang, Y., Lan, Y. F., et al., 2011. A Comparative Study on Strontium Isotope Composition of Dolomites and Their Coeval Seawater in the Late Permian–Early Triassic,NE Sichuan Basin. Acta Petrologica Sinica, 27(12): 3831–3842 (in Chinese with English Abstract)Google Scholar
  28. Hu, Z. W., Huang, S. J., Li, Z. M., et al., 2013. Geochemical Characteristics of the Permian Changxing Formation Reef Dolomites, Northeastern Sichuan Basin, China. Petroleum Science, 10(1): 38–49. doi: 10.1007/s12182-013-0247-8CrossRefGoogle Scholar
  29. Hendy, C. H., Wilson, A. T., 1968. Palaeoclimatic Data from Speleothems. Nature, 216: 48–51. doi: 10.1038/219048a0CrossRefGoogle Scholar
  30. Hendy, C. H., 1971. The Isotopic Geochemistry of Speleothems I. The Calculation of the Effects of Different Modes of Formation on the Isotopic Composition of Speleothems and Their Applicability as Palaeclimatic Indicators. Geochimica et Cosmochimica Acta, 35(8): 801–824. doi: 10.1016/0016-7037(71)90127-xCrossRefGoogle Scholar
  31. Jiang, L., Cai, C. F., Worden, R. H., et al., 2013. Reflux Dolomitization of the Upper Permian Changxing Formation and the Lower Triassic Feixianguan Formation, NE Sichuan Basin, China. Geofluid, 13: 232–245 (in Chinese with English Abstract)CrossRefGoogle Scholar
  32. Kaufman, A. J., Jacobsen, S. R., Knoll, A. H., 1993. The Vendian Record of Sr and C Isotopic Variations in Seawater: Implications for Tectonics and Paleoclimate. Earth Planet Sci. Lett., 120: 409–430. doi: 10.1016/0012-821x(93)90254-7CrossRefGoogle Scholar
  33. Kirmaci, M. Z., 2013. Origin of Dolomite in the Late Jurassic Platform Carbonates, Bolkar Mountains, Central Taurides, Turkey: Petrographic and Geochemical Evidence. Chemie der Erde, 73: 383–398CrossRefGoogle Scholar
  34. Kyser, T. K., James, N. P., Bone, Y., 2002. Shallow Burial Dolomitization and Dedolomitization of Cenozoic Cool-Water Limestones, Southern Australia: Geochemistry and Origin. Journal of Sedimentary Research, 72(1): 146–157. doi: 10.1306/060801720146CrossRefGoogle Scholar
  35. Land, L. S., 1983. The Application of Stable Isotopes to Studies of the Origin of Dolomite and to Problems of Diagenesis of Clastic Sediments. In: Stable Isotopes in Sedimentary Geology, SEPM Short Course Notes, 10: 4-1–4-22Google Scholar
  36. Land, L. S., 1985. The Origin of Massive Dolomite. Geol. Educ., 33: 112–125Google Scholar
  37. Lei, B. J., Qiang, Z. T., Wen, Y. C., 1994. Dolomitization of the Upper Permian Organic Reefs in Eastern Sichuan and its Adjacent Areas. Geological Review, 40(6): 535–543 (in Chinese)Google Scholar
  38. Li, P. C., Chen, G. H., Zeng, Q. S., et al., 2011. Genesis of Lower Ordovician Dolomite in Central Tarim Basin. Acta Sedimentologica Sinica, 29(5): 842–856Google Scholar
  39. Li, Q., Jiang, S. Y., 2016. Trace and Rare Earth Element Characteristics in Fe-Mn Carbonates Associated with Stratiform Ag-Pb-Zn Mineralization from the Lengshuikeng Ore District, Jiangxi Province: Implications for Their Genesis and Depositional Environment. Journal of Earth Science, 27(4): 571–583. doi: 10.1007/s12583-016-0908-9CrossRefGoogle Scholar
  40. Li, Y. C., 1998. Carbon and Oxygen Isotope Stratigraphy of the Upper Permian Changhsingian Limestone in Meishan Section D, Changxing, Zhejiang. Journal of Stratigraphy, 22(1): 36–41 (in Chinese with English Abstract)Google Scholar
  41. Li, Z., Goldstein, R. H. Franseen, E.K., 2013. Ascending Freshwater-Mesohaline Mixing: A New Scenario for Dolomitization. Journal of Sedimentary Research, 83: 277–283CrossRefGoogle Scholar
  42. Li, Z., Goldstein, R. H., Franseen, E. K., 2015. Geochemical Record of Fluid Flow and Dolomitization of Carbonate Platforms: Ascending Freshwater-Mesohaline Mixing, Miocene of Spain, in Fundamental Controls on Fluid Flow in Carbonate: Current Workflows to Emerging Technologies, Geological Society of London, Special Publication, 406(1): 115–140CrossRefGoogle Scholar
  43. Li, Z. M., Xu, E. S., Fan, M., et al., 2010. Geochemical Characteristics and Formation of Dolostones from the Changxing Formation at Puguang Gas Field in Sichuan Basin. Geochimica, 39(4): 371–380 (in Chinese with English Abstract)Google Scholar
  44. Liu, L. J., Jiang, H. X., Wu, Y. S., et al., 2014. Community Replacement Sequences and Paleoenvironmental Changes in Reef Areas of South China From Late Permian to Early Triassic Exemplified by Panlongdong Section in Northeastern Sichuan Basin. Science China: Earth Sciences, 57: 1093–1108 (in Chinese)CrossRefGoogle Scholar
  45. Ma, Y. S., Mu, C. L., Guo, X. S., et al., 2006. Characteristics and Frame Work of the Changxingian Sedimentation in the North Eastern Sichuan Basin. Geological Review, 52(1): 25–29Google Scholar
  46. Machel, H. G., 1988. Fluid Flow Direction during Dolomite Formation as Deduced from Trace Element Trends. In: Shukla, V., Baker, P. A., eds., Sedimentology and Geochemistry of Dolostones. SEPM Spec Publ: 115–125CrossRefGoogle Scholar
  47. Machel, H. G., Cavell, P. A., 1999. Low-Flux, Tectonically-Induced Squeegee Fluid Flow (“Hot Flash”) into the Rocky Mountain Foreland Basin. Bull can Petrol Geol, 47: 510–533Google Scholar
  48. Machel, H. G., 1997. Recrystallization versus Neomorphism, and the Concept of ‘Significant Recrystallization’ in Dolomite Research. Sedimentary Geology, 113: 161–168CrossRefGoogle Scholar
  49. Mazzullo, S. J., 1994. Dolomitization of Periplatform Carbonates (Lower Permian, Leonardian), Midland Basin, Texas. Carbonates and Evaporites, 9(1): 95–112CrossRefGoogle Scholar
  50. Meng, W. B., Wu, H. Z., Li, G. R., et al., 2014. Dolomitization Mechanisms and Influence on Reservoir Development in the Upper Permian Changxing Formation in Yuanba Area, Northern Sichuan Basin. Acta Petrologica Sinica, 30(3): 699–708 (in Chinese with English Abstract)Google Scholar
  51. Meyers, W. J., Lu, F. H., Zachariah, J. K., 1997. Dolomitization by Mixed Evaporative Brines and Freshwater, Upper Miocene Carbonate, Nijar, Spain. Sediment Res, 67(5): 898–912. doi: 10.1306/d4268671-2b26-11d7-8648000102c1865dGoogle Scholar
  52. Moore, C. H., Druckman, Y., 1981. Burial Diagenesis and Porosity Evolution, Upper Jurassic Smackover, Arkansas and Louisiana. American Association of Petroleum Geologists Bulletin, 65: 597–628. doi: 10.1306/2f919995-16ce-11d7-8645000102c1865dGoogle Scholar
  53. Qing, H. R., Mountjoy, E. W., 1992. Large-Scale Fluid Flow in the Middle Devonian Presqu’ile Barrier, Western Canada Sedimentary Basin. Geology, 20: 903–906. doi: 10.1130/0091-7613(1992)020<0903:lsffit>2.3.co;2CrossRefGoogle Scholar
  54. Qing, H. R., Veizer, J., 1994. Oxygen and Carbon Isotopic Composition of Ordovician Brachiopods: Implications for Coeval Seawater. Geochim Cosmochim Acta, 58(20): 4429–4442. doi: 10.1016/0016-7037(94)90345-xCrossRefGoogle Scholar
  55. Qing, H. R., Mountjoy, E. W., 1994. Formation of Coarsely Crystalline, Hydrothermal Dolomite Reservoirs in the Presqu’ile Barrier, Western Canada Sedimentary Basin. AAPG Bull., 78(1): 55–77. doi: 10.1306/bdff9014-1718-11d7-8645000102c1865dGoogle Scholar
  56. Rameil, N., 2008. Early Diagenetic Dolomitization and Dedolomitization of Late Jurassic and Earliest Cretaceous Platform Carbonates: A Case Study from the Jura Mountains (NW Switzerland, E France). Sedimentary Geology, 212(1–4): 70–85. doi: 10.1016/j.sedgeo.2008.10.004CrossRefGoogle Scholar
  57. Rao, C. P., 1990. Marine to Mixing Zone Dolomitization in Peritidal Carbonates: the Gordon Group (Ordovician), Mole Creek, Tasmania, Australia. Carbonates and Evaporites, 6(2): 153–178CrossRefGoogle Scholar
  58. Reinhold, C., 1998. Multiple Episodes of Dolomitization and Dolomite Recrystallization during Shallow Burial in Upper Jurassic Shelf Carbonates: Eastern Swabian Alb, Southern Germany. Sedimentary Geology, 121(1): 71–95. doi: 10.1016/s0037-0738(98)00077-3CrossRefGoogle Scholar
  59. Saller, A. H., Dickson, J. A. D., Boyd, S. A., 1994. Cycle Stratigraphy and Porosity in Pennsylvanian and Lower Permian Shelf Limestones, Eastern Central Basin Platform. American Association of Petroleum Geologists Bulletin, 78(12): 1820–1842Google Scholar
  60. Saller, A. H., Henderson, N., 1998. Distribution of Porosity and Permeability in Platform Dolomites: Insight from the Permian of West Texas. AAPG Bulletin, 82(8): 1528–1550. doi: 10.1306/a25ff30f-171b-11d7-8645000102c1865dGoogle Scholar
  61. Saller, A. H., Henderson, N., 2001. Distribution of Porosity and Permeability in Platform Dolomites: Insight from the Permian of West Texas: Reply. AAPG Bullentin, 85: 530–532Google Scholar
  62. Saller, A. H., 2004. Paleozoic Dolomite Reservoir in the Permian Basin, SW USA: Stratigraphic Distribution, Porosity, Permeability and Production. The Geometry and Petrogenesis of Dolomite Hydrocarbon Reservoirs. Geological Society Special Publications, Geological Society of London: 235(1): 309–323. doi: 10.1144/gsl.sp.2004.235.01.13CrossRefGoogle Scholar
  63. Sass, E., Katz, A., 1982. The Origin of Platform Dolomites: New Evidence. Am. J. Sci, 282(8): 1184–1213. doi: 10.2475/ajs.282.8.1184CrossRefGoogle Scholar
  64. Sheppard, S. M. F., Schwarz, H. P., 1970. Fractionation of Carbon and Oxygen Isotopes and Magnesium between Coexisting Metamorphic Calcite and Dolomite. Contributions to Mineralogy and Petrology, 26: 161–198. doi: 10.1007/bf00373200CrossRefGoogle Scholar
  65. Spotl, C., 1992. Carbonates in Upper Permian Evaporites of the Northern Calcareous Alps, Austria. Geologische Rundschau, 81(2): 309–321. doi: 10.1007/bf01828600CrossRefGoogle Scholar
  66. Sofer, Z., Gat, J. R., 1975. The Isotope Composition of Evaporating Brines: Effect of the Isotopic Activity Ratio in Saline Solutions. Earth Planet Sci. Lett., 26(2): 179–186. doi: 10.1016/0012-821x(75)90085-0CrossRefGoogle Scholar
  67. Tucker, M. E., Wright, V. P., 1992. Carbonate Sedimentology. Blackwell, Oxford. 482Google Scholar
  68. Veizer, J., Hoefs, J., 1976. The Nature of 18O/16O and 13C/12C Secular Trends in Sedimentary Carbonate Rocks. Geochim Cosmochim Acta, 40(11): 1387–1395. doi: 10.1016/0016-7037(76)90129-0CrossRefGoogle Scholar
  69. Wahlman, G. P., 2010. Reflux Dolomite Crystal Size Variation in Cyclic Inner Ramp Reservoir Facies, Bromide Formation (Ordovician), Arkoma Basin, Southeastern Oklahoma. Sediment. Rec., 8: 4–9. doi: 10.2110/sedred.2010.3.4CrossRefGoogle Scholar
  70. Wang, G. Q., Xia, W. C., 2000. The Variation of Isotopes(C, O) and the Organism Extinction Event across the P/T Boundary in Ziyun Section, Guizhou Province. Earth Science Frontiers, 7(2): 339–344Google Scholar
  71. Wang, Y. G., Wen, Y. C., Zhang, F., 1998. Distribution Law of the Organic Reefs in Changxing Formation of Upper Permian in East Sichuan. Natural Gas Industry, 18(6): 10–15Google Scholar
  72. Wang, Y. S., 1996. The Reefs of Changxing Period and the Reef Gas Accumulation in Sichuan Basin. Mineral. Petrol., 16(2): 62–69 (in Chinese with English Abstract)Google Scholar
  73. Wei, G. Q., Chen, G. S., Yang, W., et al., 2006. Preliminary Study of the Boundary of Kaijiang-Liangping trough in Northeast Sichuan Basin and Its Characteristics. Oil & Gas Geology, 27(1): 99–107 (in Chinese with English Abstract)Google Scholar
  74. Wilson, E. N., Hardie, L. A., Phillips, O. M., 1990. Dolomitization Front Geometry, Fluid Flow Patterns, and the Origin of Massive Dolomite: The Triassic Latemar Buildup, Northern Italy. American Journal of Science, 209(7): 741–796. doi: 10.2475/ajs.290.7.741CrossRefGoogle Scholar
  75. Wu, Q., Peng, J. N., 2013. Burial and Thermal Histories of Northeastern Sichuan Basin: A Case Study of Well Puguang 2. Petroleum Geology& Experiment, 35(2): 133–138 (in Chinese with English Abstract)Google Scholar
  76. Wu, S. Q., Zhu, J. Q., Wang, G. X., et al., 2008. Types and Origin of Cambrian–Ordovician Dolomites in Tarim Basin. Acta Petrologica Sinica, 24(6): 1390–1400Google Scholar
  77. Wu, Y. S., Fan, J. S., Jin, Y. G., 2003. Emergence of the Late Permian Changsingian Reefs at the End of the Permian. Acta Geologica Sinica, 77(3): 289–296 (in Chinese with English Abstract)Google Scholar
  78. Wu, Y. S., Jiang, H. X., Liao, T. P., 2006a. Sea-Level Drops in the Permian–Triassic Boundary Section at Laolongdong, Chongqing, Sichuan Province. Acta Petrologica Sinica, 22(9): 2405–2412 (in Chinese with English Abstract)Google Scholar
  79. Wu, Y. S., Yang, W., Jiang, H. X., et al., 2006b. Petrologic Evidence for Sea-Level Drop in Latest Permian in Jiangxi Province, China and its Meanings for the Mass Extinction. Acta Petrologica Sinica, 22(12): 3039–3046 (in Chinese)Google Scholar
  80. Wu, Y. S., Jiang, H., Fan, J. S., 2010. Evidence for Sea-Level Falls in the Permian–Triassic Transition in the Ziyun Area, South China. Geological Journal, 45(2–3): 170–185 (in Chinese with English Abstract)Google Scholar
  81. Wu, Y. Q., Wu, Z. D., 1998. Diagenetic Modification of Dolomite in Middle Ordovician Carbonates, Taiyuan City Area, China. Sedimentary Geology, 116(1–2): 143–156. doi: 10.1016/s0037-0738(97)00079-1CrossRefGoogle Scholar
  82. Ye, Q. C., Mazzullo, S. J., 1993. Dolomitization of Lower Permian Platform Facies, Wichita Formation, North Platform, Midland Basin, Texas. Carbonates and Evaporites, 8(1): 55–70. doi: 10.1007/bf03175163CrossRefGoogle Scholar
  83. Zeebe, R. E., 2001. Seawater PH and Isotopic Paleotemperatures of Cretaceous Oceans. Palaeogeography Palaeoclimatology Palaeoecology, 170(1–2): 49–57. doi: 10.1016/s0031-0182(01)00226-7CrossRefGoogle Scholar
  84. Zhang, B., Zheng, R. C., Wang, X. B., et al., 2012. Geochemical Characteristics and Diagenetic Systems of Dolomite Reservoirs of the Changxing Formation in the Eastern Sichuan Basin, China. Petroleum Science, 9(2): 141–153. doi: 10.1007/s12182-012-0194-9CrossRefGoogle Scholar
  85. Zhang, T. T., Liu, B., Qin, S., 2008. The Origin of Permian and Triassic Dolostones in Northeastern Sichuan Province, China. Acta Scientiarum Naturalium Universitatis Pekinensis, 44(5): 799–809 (in Chinese)Google Scholar
  86. Zhao, R., Wu, Y. S., Jiang, H. X., et al., 2014. Origin Evidenced by Statistic Feature and Orientation Fabric in the Upper Permian Changxing Formation Dolostone of Panlongdong, Northeastern Sichuan. Acta Geologica Sinica, 88(6): 1093–1105Google Scholar
  87. Zheng, R. C., Hu, Z. G., Feng, Q. P., et al., 2007. Genesis of Dolomite Reservoir of the Changxing Formation of Upper Permian, Northeast Sichuan Basin. Mineral. Petrol., 27(4): 78–84 (in Chinese with English Abstract)Google Scholar
  88. Zheng, R. C., Geng, W., Zheng, C., et al., 2008a. Genesis of Dolostone Reservoir of Feixianguan Formation in Low Er Triassic of Northeast Sichuan Basin. Acta Petrolei Sinica, 29(6): 815–821 (in Chinese with English Abstract)Google Scholar
  89. Zheng, R. C., Shi, J. N., Luo, A. J., et al., 2008b. Comparative Study on Geochemical Behaviors of Dolomite Reservoirs in Northeast Sichuan Basin. Natural Gas Industry, 28(11): 16–21 (in Chinese)Google Scholar
  90. Zheng, R. C., Hu, Z. G., Zheng, C., et al., 2008c. Geochemical Characteristics of Stable Isotopes in Paleokarst Reservoirs in Huanglong Formation in Northern Chongqing-Eastern Sichuan Area. Earth Science Frontiers, 15(6): 303–311 (in Chinese with English Abstract)Google Scholar
  91. Zheng, R. C., Luo, P., Wen, Q. B., et al., 2009. Characteristics of Sequence Based Lithofacies and Paleogeography and Prediction of Oolitic Shoal of the Feixianguan Formation in the Northeastern Sichuan. Acta Sedimentologica Sinica, 27(1): 1–8 (in Chinese with English Abstract)Google Scholar
  92. Zheng, R. C., Dang, L. R., Zheng, C., et al., 2010. Diagenetic System of Carbonate Reservoirs in Huanglong Formation from the East Sichuan to North Chongqing Area. Acta Petrolei Sinica, 31(2): 237–245 (in Chinese with English Abstract)CrossRefGoogle Scholar
  93. Zheng, R. C., Dang, L. R., Wen, H. G., et al., 2011. Diagenesis Characteristics and System for Dolostone in Feixianguan Formation of Northeast Sichuan. Earth Science Journal of China University of Geosciences, 36(4): 659–669Google Scholar

Copyright information

© China University of Geosciences and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Rui Zhao
    • 1
    • 2
  • Yasheng Wu
    • 1
    • 2
  • Hongxia Jiang
    • 1
  • Qingsong Liu
    • 3
  1. 1.Key Laboratory of Petroleum Resources Research, Institute of Geology and GeophysicsChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.School of Energy ResourcesChina University of GeosciencesBeijingChina

Personalised recommendations