Advertisement

Journal of Earth Science

, Volume 28, Issue 2, pp 283–294 | Cite as

The Parkam exploration district, Kerman, Iran: Geology, alterations, and delineation of Cu- and Mo-mineralized zones using U-spatial statistic with associated software development

  • Seyyed Saeed Ghannadpour
  • Ardeshir Hezarkhani
  • Armin Sabet-Mobarhan-Talab
Mineral Deposits

Abstract

The Parkam exploration district represents an area of approximately 4 km2 located 50 km north of Shahr-E-Babak (Kerman Province, Iran), and has several traces of old copper mining and smelting activities. This area lies in the Kerman Copper Belt which is part of the larger Sahand-Bazman igneous and metallogenic zone hosting numerous known porphyry copper deposits and systems. The geology of the Parkam exploration district demonstrates that the area contains a diorite-type porphyry copper system hosted by volcanic and pyroclastic rocks of predominantly andesitic composition. Based on field and microscopic investigation, it was determined that the dominant types of alteration were propylitic, phyllic, argillic, and potassic, and the alteration map of the study area was produced. Expect for the propylitic alteration which was observed mainly in the host rocks, the other types of alteration are associated mainly with the dioritic subvolcanic body. Accompanied by subordinate amounts of primary sulfides, fracture-filling malachite is widespread in the potassic and phyllic zones and comprises the dominant style of mineralization at the surface of the porphyry system. Lithogeochemical data resulting from 377 samples were analyzed, and the results of background and anomaly separation by means of conventional and the U-spatial statistic method were compared. The Cu and Mo mineralizations were subsequently delineated using the U-spatial statistic. The delineated Cu mineralization is closely associated with the defined zone of potassic alteration, which is also consistent with the field and microscopic observation of the Cu mineralization in this alteration zone. The Mo mineralization delineated by the U-statistic method is mostly associated with the phyllic alteration and is spatially conformable with the zone defined for it. The source code for a software program, which was developed in the MATLAB programming language in order to perform the calculations of the U-spatial statistic method, is additionally provided. This software is compatible with geochemical variates other than Cu and Mo and can be used in similar exploration projects.

Key Words

Parkam U-Statistic anomaly separation Cu Mo 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This revised version has greatly benefited from the insightful, constructive comments the associate editor and another anonymous reviewer kindly provided. The final publication is available at Springer via http://dx.doi.org/10.1007/s12583-017-0722-z.

References Cited

  1. Adamia, S. H., Lordkiparidze, M., Zakariadze, G., 1980. The Caucasus. In: Adamia, S. H. ed.. The Alpine Middle East between the Aegean and the Oman Traverses. Colloque C5.26 IGC. Memoire BRGM. 131–132Google Scholar
  2. Alavi, M., 1994. Tectonic of the Zagros Orogenic Belt of Iran: New Data and interpretations. Tectonophysics, 229(3–4): 211–238. doi: 10.1016/0040-1951(94)90030-2CrossRefGoogle Scholar
  3. Berberian, M., King, G. C., 1981. Towards a Paleogeography and Tectonic Evolution of Iran. Can. J. Earth Sci., 18(2): 210–265. doi: 10.1139/e81-019CrossRefGoogle Scholar
  4. Berberian, M., 1983. The Southern Caspian: A Compressional Depression Floored by a Trapped, Modified Oceanic Crust. Can. J. Earth Sci., 20(2): 163–183. doi: 10.1139/e83-015CrossRefGoogle Scholar
  5. Cheng, Q., 1999. Spatial and Scaling Modeling for Geochemical Anomaly Separation. J. Geo. Chem. Exp., 65(3): 175–194. doi: 10.1016/s0375-6742(99)00028-xCrossRefGoogle Scholar
  6. Cheng, Q., Agterberg, F.P., Ballantyne, S. B., 1994. The Separation of Geochemical Anomalies from Background by Fractal Methods. J. Geo. Chem. Exp., 51(2): 109–130. doi: 10.1016/0375-6742(94)90013-2CrossRefGoogle Scholar
  7. Cheng, Q., Agterberg, F.P., Bonham-Carter, G. F., 1996. A Spatial Analysis Method for Geochemical Anomaly Separation. J. Geo. Chem. Exp., 56(3): 183–195. doi: 10.1016/s0375-6742(96)00035-0CrossRefGoogle Scholar
  8. Cheng, Q., 2007. Mapping Singularities with Stream Sediment Geochemical Data for Prediction of Undiscovered Mineral Deposits in Gejiu, Yunnan Province, China. Ore. Geol. Rev., 32(1): 314–324. doi: 10.1016/j.oregeorev.2006.10.002CrossRefGoogle Scholar
  9. Etminan, H., 1978. Fluid Inclusion Studies of the Porphyry Copper Ore Bodies at Sar-Cheshmeh, Darreh Zar, and Mieduk (Kerman Region, Southeastern Iran) and Porphyry Copper Discoveries at Miduk, Gozan, and Kighal, Azarbaijan Region (Northwestern Iran): International Association of the Genesis of Ore Deposits. 5th Symposium. Snowbird. Utah. 88Google Scholar
  10. Fu, K., 2012. An Application of U-statistics to Nonparametric Functional Data Analysis. Communications in Statistics. Theory and Methods., 41(9): 1532–1542. doi: 10.1080/03610926.2010.526747CrossRefGoogle Scholar
  11. Gent, M., Menendez, M., Toraño, J., Torno, S., 2011. A Review of Indicator Minerals and Sample Processing Methods for Geochemical Exploration. J. Geo. Chem. Exp., 110(2): 47–60. doi: 10.1016/j.gexplo.2011.05.005CrossRefGoogle Scholar
  12. Ghannadpour, S. S., Hezarkhani, A., 2012a. Determination of the Initial Statistical Specifications of Copper and Molybdenum Elements in Porphyry Copper Ore Deposits in Kerman. International Mining Congress & Expo. Iran 20: 779–782Google Scholar
  13. Ghannadpour, S. S., Hezarkhani, A., 2012b. A Developed Software to Calculate the Additive Constant Number of Average in Three-Variable Normal Logarithm. Glob. J. Comp. Sci., 2(1): 1–6Google Scholar
  14. Ghannadpour, S. S., Hezarkhani, A., Eshqi, H., 2012. Average and Variance Estimation Programming in Normal Logarithmic Distribution. Glob. J. Comp. Sci., 2(1): 7–13Google Scholar
  15. Ghannadpour, S. S., 2013. Geochemical Studies of Porphyry Copper Ore Deposit of Parkam, Kerman. MS Thesis. Amirkabir University of Technology (Tehran Polytechnic), Tehran.Google Scholar
  16. Ghannadpour, S. S., Hezarkhani, A., Farahbakhsh, E., 2013a. An Investigation of Pb Geochemical Behavior Respect to Those of Fe and Zn Based on K-Means Clustering Method. J. Tethys., 1(4): 291–302. doi: 10.1007/s12517-013-1096-xGoogle Scholar
  17. Ghannadpour, S. S., Mokhtari, A. R., Hezarkhani, A., Fathianpour, N., 2013b. Modification of Sinclair’s Mixed Statistical Populations Algorithm Based on Probability Plots. J. A. Numer. Method. Min. Eng., 3(5): 28–37 (In Persian)Google Scholar
  18. Ghannadpour, S. S., Hezarkhani, A., 2015. Investigation of Cu, Mo, Pb, and Zn Geochemical Behavior and Geological Interpretations for Parkam Porphyry Copper System, Kerman, Iran. Arab. J. Geo. Sci., 9(8): 7273–7284. doi: 10.1007/s12517-014-1732-0CrossRefGoogle Scholar
  19. Ghannadpour, S. S., Hezarkhani, A., Sabetmobarhan, A., 2015. Some Statistical Analyses of Cu and Mo Variates and Geological Interpretations for Parkam Porphyry Copper System, Kerman, Iran. Arab. J. Geo. Sci., 8(1): 345–355CrossRefGoogle Scholar
  20. Gonçalves, M. A., Mateus, A., Oliveira, V., 2001. Geochemical Anomaly Separation by Multifractal Modeling. J. Geo. Chem. Exp., 72(2): 91–114. doi: 10.1016/s0375-6742(01)00156-xCrossRefGoogle Scholar
  21. Habibi, T., Hezarkhani, A., 2013. Hydrothermal Evolution of Daraloo Porphyry Copper Deposit, Iran: Evidence from Fluid Inclusions. Arab. J. Geo. Sci., 6(6): 1945–1955. doi: 10.1007/s12517-011-0488-zCrossRefGoogle Scholar
  22. Hallam, A., 1976. Geology and Plate Tectonics Interpretation of the Sediments of the Mesozoic Radiolarite-Ophiolite Complex in the Neyriz Region, Southern Iran. Bull Geol. Soc. Am., 87(1): 47–52CrossRefGoogle Scholar
  23. Hassanzadeh, J., 1993. Metallogenic and Tectono-Magmatic Events in SE Sector of the Cenozoic Active Continental Margin of Central Iran (Shahr-Babak, Kerman province): [Dissertation]. University of California, Los Angeles, 201Google Scholar
  24. Hezarkhani, A., 2006a. Hydrothermal Evolutions at the Sar-Cheshmeh Porphyry Cu-Mo Deposit, Iran: Evidence from Fluid Inclusions. J. Asian. Earth. Sci., 28(4–6): 408–422. doi: 10.1016/j.jseaes.2005.11.003Google Scholar
  25. Hezarkhani, A., 2006b. Petrology of Intrusive Rocks within the Sungun Porphyry Copper Deposit, Azarbaijan, Iran. J. Asian. Earth. Sci., 27(3): 326–340. doi: 10.1016/j.jseaes.2005.04.005CrossRefGoogle Scholar
  26. Hezarkhani, A., Ghannadpour, S. S., 2015. Exploration Information Analysis Amirkabir University of Technology (Tehran Polytechnic) Press, Tehran. (In Persian)Google Scholar
  27. Jébrak, M., 2006. Economic Geology: Then and Now. Geo. Sci. Can., 33(2): 81–93Google Scholar
  28. Li, C., Ma, T., Shi, J., 2003. Application of a Fractal Method Relating Concentrations and Distances for Separation of Geochemical Anomalies from Background. J. Geo. Chem. Exp., 77(2–3): 167–175. doi: 10.1016/s0375-6742(02)00276-5CrossRefGoogle Scholar
  29. Liu, Y., Cheng, Q., Xia, Q., Wang, X., 2013a. Multivariate Analysis of Stream Sediment Data from Nanling Metallogenic Belt, South China. Geochem Explor. Env. A., 14(4): 331–340CrossRefGoogle Scholar
  30. Liu, Y., Cheng, Q., Xia, Q., Wang, X., 2013b. Application of Singularity Analysis for Mineral Potential Identification Using Geochemical Data —A Case Study: Nanling W-Sn-Mo Polymetallic Metallogenic Belt, South China. J. Geo. Chem. Exp., 134: 61–72. doi: 10.1016/j.gexplo.2013.08.006CrossRefGoogle Scholar
  31. Liu, Y., Cheng, Q., Xia, Q., Wang, X., 2014. Identification of REE Mineralization-Related Geochemical Anomalies Using Fractal/Multifractal Methods in the Nanling Belt, South China. Environ. Earth. Sci., 72(12): 5159–5169. doi: 10.1007/s12665-014-3385-4CrossRefGoogle Scholar
  32. Miesch, A., 1981. Estimation of the Geochemical Threshold and Its Statistical Significance. J. Geo. Chem. Exp., 16(1): 49–76. doi: 10.1016/0375-6742(81)90125-4CrossRefGoogle Scholar
  33. Mohammadi, L. H., Taghipour, N., Iranmanesh, M. R., 2012. Dispersion Pattern of Cu, Mo and Pb, Zn and Fe in Sarah (Parkam) Porphyry Copper Deposit, Shahr–E Babak, Kerman Province, Iran. Iran. J. Geol 5(11): 17–28Google Scholar
  34. Peck, R., Devore, J. L., 2012. Statistics: The Exploration and Analysis of Data. Seventh ed. Brooks. 451Google Scholar
  35. Sevari, B., A., Hezarkhani, A., 2014. Hydrothermal Evolution of Darrehzar Porphyry Copper Deposit, Iran: Evidence from Fluid Inclusions. Arab. J. Geo. Sci., 7(4): 1463–1477. doi: 10.1007/s12517-011-0488-zCrossRefGoogle Scholar
  36. Shahabpour, J., 1982. Aspects of Alteration and Mineralization at the Sar-Cheshmeh Copper-Molybdenum Deposit, Kerman, Iran. Unpubl. Ph.D. thesis. Leeds University. 342Google Scholar
  37. Shahabpour, J., 2005. Tectonic Evolution of the Orogenic Belt in the Region Located between Kerman and Neyriz. J. Asian. Earth. Sci., 24(4): 405–417. doi: 10.1016/j.jseaes.2003.11.007CrossRefGoogle Scholar
  38. Sinclair, A.J., 1989. Application of Probability Graphs in Mineral Exploration. The Association of Exploration Geochemists. 235Google Scholar
  39. Stöcklin, J., 1974. Possible Ancient Continental Margins in Iran. In: Burk, C. A., Drake, C. L., eds., The Geology of Continental Margins. In Springer, Berlin, 873–887CrossRefGoogle Scholar
  40. Stöcklin, J., 1977. Structural Correlation of the Alpine Range between Iran and Central Asia. Memoire Hors-Serve No. 8 dela Societe Geologique de France., 8: 333–353. doi: 10.1016/0375-6742(77)90102-9Google Scholar
  41. Takin, M., 1972. Iranian Geology and Continental Drift in the Middle East. Nature, 235(5334): 147–150. doi: 10.1038/235147a0CrossRefGoogle Scholar
  42. Tangestani, M. H., Moore, F., 2001. Porphyry Copper Potential Mapping Using the Weights-of-Evidence Model in a GIS, Northern Shahr-e-Babak, Iran. Aust. J. Earth. Sci., 48(5): 695–701. doi: 10.1046/j.1440-0952.2001.485889.xCrossRefGoogle Scholar
  43. Walker, R., Jackson, J., 2002. Offset and Evolution of the Gowk Fault, S.E, Iran: A Major Intra-Continental Strike-Slip System. J. Struct. Geol., 24(11): 1677–1698. doi: 10.1016/s0191-8141(01)00170-5CrossRefGoogle Scholar
  44. Wang, W., Zhao, J., Cheng, Q., 2013. Fault Trace-Oriented Singularity Mapping Technique to Characterize Anisotropic Geochemical Signatures in Gejiu Mineral District, China. J. Geo. Chem. Exp., 134: 27–37. doi: 10.1016/j.gexplo.2013.07.009CrossRefGoogle Scholar
  45. Welland, M. J. P., Mitchell, A. H. G., 1977. Emplacement of the Oman Ophiolite: A Mechanism Related to Subduction and Collision. Bull. Geol. Soc. Am., 88(8): 1081–1088. doi: 10.1130/0016-7606(1977)88<1081:eotooa>2.0.co;2CrossRefGoogle Scholar
  46. Xu, L., Bi, X., Hu, R., Zhang, X., Su, W., Qu, W., Hu, Z., Tang, T., 2012. Relationships between Porphyry Cu-Mo Mineralization in the Jinshajiang-Red River Metallogenic Belt and Tectonic Activity: Constraints from Zircon U-Pb and Molybdenite Re-Os Geochronology. Ore. Geol. Rev., 48: 460–473. doi: 10.1016/j.oregeorev.2012.05.010CrossRefGoogle Scholar

Copyright information

© China University of Geosciences and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Seyyed Saeed Ghannadpour
    • 1
  • Ardeshir Hezarkhani
    • 1
  • Armin Sabet-Mobarhan-Talab
    • 1
  1. 1.Department of Mining and Metallurgical EngineeringAmirkabir University of Technology (Tehran Polytechnic)TehranIran

Personalised recommendations