Journal of Earth Science

, Volume 28, Issue 2, pp 187–195 | Cite as

Carbon isotope gradient of the Ediacaran cap carbonate in the Shennongjia area and its implications for ocean stratification and palaeogeography

  • Guangzhe Wang
  • Jiasheng Wang
  • Zhou Wang
  • Can Chen
  • Junxia Yang
Paleontology and Paleoecology


The geochemistry and paleogeography of the Doushantuo succession in the Shennongjia area have been insufficiently studied. Here, we report on the carbon and oxygen isotope compositions of Ediacaran Doushantuo cap carbonates from four sections (Longxi, Muyu, Yazikou and Songluo) in the Shennongjia area. A large C-isotopic gradient (~5‰) between the Longxi and Songluo sections, here identified for the first time, is inferred to have been dynamically maintained by photosynthesis in surface waters and anaerobic oxidation of dissolved organic carbon (DOC) in deep waters. Spatial variation in C-isotope chemostratigraphy among the four sections was related to Marinoan post-glacial sea-level elevation changes. At Longxi, a positive δ 13Ccarb shift below the horizon containing tepee-like structure resulted from intense photosynthesis during early regression. A negative δ 13Ccarb shift within the tepee-horizon was triggered by sulfate reduction and freshwater mixing with 13C-depleted dissolved inorganic carbon (DIC) during late regression. A positive δ 13Ccarb excursion in the uppermost part of the cap carbonate was related to enhance primary productivity and organic matter burial during early transgression. At Muyu, the carbon isotopic variation tendency, which is similar to that at Longxi, may have been mildly influenced by the surface water environment. At Songluo, the positive δ 13Ccarb excursion, up to -4‰ in the lower part of the cap carbonate, was probably associated with methanogenesis in deep waters during late transgression to early regression and subsequently disappeared due to decomposition of methane hydrate during late regression. At Yazikou, the consistently stable δ 13Ccarb values around -4‰ indicate that the cap carbonate may have deposited at intermediate water depths. As evidenced by diagnostic sedimentary characteristics of the study sections, the palaeogeographic framework of the Shennongjia area exhibited deepening from SE to NW during the Early Ediacaran Period in the aftermath of Snowball Earth.

Key Words

Ediacaran Doushantuo cap carbonate carbon isotope stratification palaeogeography Shennongjia 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This research is supported by State Key R&D project of China (No. 2016YFA0601100) & the international IMBER project, the National Natural Science Foundation of China (Nos. 41472085, 41172102) and China Scholarship Council. We would like to thank Xinjun Wang for carbon and oxygen isotope analysis. We are also grateful to three anonymous reviewers and the editor for their constructive comments and the Prof. Thomas J. Algeo for his valuable reviews. The final publication is available at Springer via

References Cited

  1. Ader, M., Macouin, M., Trindade, R. I. F., 2009. A Multilayered Water Column in the Ediacaran Yangtze Platform? Insights from Carbonate and Organic Matter Paired δ 13C. Earth and Planetary Science Letters, 288(1): 213–227CrossRefGoogle Scholar
  2. Broecker, W. S., Peng, T. H., 1982. Tracers in the Sea. Eldigio Press, Palisades, New York. 690Google Scholar
  3. Calver, C. R., 2000. Isotope Stratigraphy of the Ediacarian (Neoproterozoic III) of the Adelaide Rift Complex, Australia, and the Overprint of Water Column Stratification. Precambrian Research, 100(1–3): 121–150. doi: 10.1016/s0301-9268(99)00072-8CrossRefGoogle Scholar
  4. Deuser, W. G., 1970. 13C in Black Sea Waters and Implications for the Origin of Hydrogen Sulfide. Science, 168(3939): 1575–1577. doi: 10.1126/science.168.3939.1575CrossRefGoogle Scholar
  5. Gao, S., Ling, W., Qiu, Y., et al., 1999. Contrasting Geochemical and Sm-Nd Isotopic Compositions of Archean Metasediments from the Kongling High-Grade Terrain of the Yangtze Craton: Evidence for Cratonic Evolution and Redistribution of REE during Crustal Anatexis. Geochimica et Cosmochimica Acta, 63(13–14): 2071–2088. doi: 10.1016/s0016-7037(99)00153-2CrossRefGoogle Scholar
  6. Guo, J., Gao, S., Wu, Y., et al., 2014. 3.45 Ga Granitic Gneisses from the Yangtze Craton, South China: Implications for Early Archean Crustal Growth. Precambrian Research, 242(3): 82–95. doi: 10.1016/j.precamres.2013.12.018CrossRefGoogle Scholar
  7. Halverson, G. P., Hoffman, P. F., Schrag, D. P., et al., 2005. Toward a Neoproterozoic Composite Carbon-Isotope Record. Geological Society of America Bulletin, 117(9): 1181–1207. doi: 10.1130/b25630.1CrossRefGoogle Scholar
  8. Hoffman, P. F., Halverson, G. P., Domack, E. W., et al., 2007. Are Basal Ediacaran (635 Ma) Post-Glacial “Cap Dolostones” Diachronous? Earth and Planetary Science Letters, 258(1–2): 114–131. doi: 10.1016/j.epsl.2007.03.032CrossRefGoogle Scholar
  9. Hoffman, P. F., Kaufman, A. J., Halverson, G. P., et al., 1998. A Neoproterozoic Snowball Earth. Science, 281(5381): 1342–1346CrossRefGoogle Scholar
  10. Hoffman, P. F., Schrag, D. P., 2002. The Snowball Earth Hypothesis: Testing the Limits of Global Change. Terra Nova, 14(3): 129–155. doi: 10.1046/j.1365-3121.2002.00408.xCrossRefGoogle Scholar
  11. Hu, N., 1997a. Petrological Characters and Sedimentary Environment in Middle Proterozoic Shicaohe Formation of Shennongjia, Hubei Province. Geology and Mineral Resources of South China, 2: 54–61 (in Chinese with English abstract)Google Scholar
  12. Hu, N., 1997b. Lithofacies Palaeogeography of Luanshigou Formation of the Middle Proterozoic in Shennongjia Region of West Hubei, China. Journal of Mineralogy & Petrology, 17(1): 58–62 (in Chinese with English Abstract)Google Scholar
  13. Huang, J., Chu, X., Lyons, T. W., et al., 2013. The Sulfur Isotope Signatures of Marinoan Deglaciation Captured in Neoproterozoic Shallow-to-Deep Cap Carbonate from South China. Precambrian Research, 238: 42–51. doi: 10.1016/j.precamres.2013.09.002CrossRefGoogle Scholar
  14. Jacobsen, S. B., Kaufman, A. J., 1999. The Sr, C and O Isotopic Evolution of Neoproterozoic Seawater. Chemical Geology, 161(1–3): 37–57. doi: 10.1016/s0009-2541(99)00080-7CrossRefGoogle Scholar
  15. James, N. P., Narbonne, G. M., Kyser, T. K., 2001. Late Neoproterozoic Cap Carbonates: Mackenzie Mountains, Northwestern Canada: Precipitation and Global Glacial Meltdown. Canadian Journal of Earth Sciences, 38(8): 1229–1262. doi: 10.1139/cjes-38-8-1229CrossRefGoogle Scholar
  16. Jiang, G. Q., Kennedy, M. J., Christie-Blick, N., 2003. Stable Isotopic Evidence for Methane Seeps in Neoproterozoic Postglacial Cap Carbonates. Nature, 426(6968): 822–826. doi: 10.1038/nature02201CrossRefGoogle Scholar
  17. Jiang, G., Kaufman, A. J., Christie-Blick, N., et al., 2007. Carbon Isotope Variability across the Ediacaran Yangtze Platform in South China: Implications for a Large Surface-to-Deep Ocean δ 13C Gradient. Earth and Planetary Science Letters, 261(1–2): 303–320CrossRefGoogle Scholar
  18. Jiang, G., Kennedy, M. J., Christie-Blick, N., et al., 2006. Stratigraphy, Sedimentary Structures, and Textures of the Late Neoproterozoic Doushantuo Cap Carbonate in South China. Journal of Sedimentary Research, 76(7): 978–995. doi: 10.2110/jsr.2006.086CrossRefGoogle Scholar
  19. Jiang, G., Shi, X., Zhang, S., et al., 2011. Stratigraphy and Paleogeography of the Ediacaran Doushantuo Formation (ca. 635–551Ma) in South China. Gondwana Research, 19(4): 831–849. doi: 10.1016/ Scholar
  20. Jiang, G., Wang, X., Shi, X., et al., 2010. Organic Carbon Isotope Constraints on the Dissolved Organic Carbon (DOC) Reservoir at the Cryogenian–Ediacaran Transition. Earth and Planetary Science Letters, 299(1–2): 159–168. doi: 10.1016/j.epsl.2010.08.031CrossRefGoogle Scholar
  21. Jiang, G., Zhang, S., Shi, X., et al., 2008. Chemocline Instability and Isotope Variations of the Ediacaran Doushantuo Basin in South China. Science in China Series D: Earth Sciences, 51(11): 1560–1569CrossRefGoogle Scholar
  22. Jiao, N. Z., Herndl, G. J., Hansell, D. A., et al., 2010. Microbial Production of Recalcitrant DOC Long Term Carbon Storage. Nature Reviews Microbiology, 8(8): 593–599. doi: 10.1007/s11430-008-0116-2CrossRefGoogle Scholar
  23. Kaufman, A. J., Knoll, A. H., 1995. Neoproterozoic Variations in the C-Isotopic Composition of Seawater: Stratigraphic and Biogeochemical Implications. Precambrian Research, 73(1–4): 27–49. doi: 10.1016/0301-9268(94)00070-8CrossRefGoogle Scholar
  24. Kennedy, M. J., 1996. Stratigraphy, Sedimentology, and Isotopic Geochemistry of Australian Neoproterozoic Postglacial Cap Dolostones: Deglaciation, δ 13C Excursions, and Carbonate Precipitation. Journal of Sedimentary Research, 66: 1050–1064CrossRefGoogle Scholar
  25. Killingsworth, B. A., Hayles, J. A., Zhou, C., et al., 2013. Sedimentary Constraints on the Duration of the Marinoan Oxygen-17 Depletion (MOSD) Event. Proceedings of the National Academy of Sciences, 110(44): 17686–17690. doi: 10.1073/pnas.1213154110CrossRefGoogle Scholar
  26. Knauth, L. P., Kennedy, M. J., 2009. The Late Precambrian Greening of the Earth. Nature, 460: 728–732. doi: 10.1038/nature08213Google Scholar
  27. Li, H. K., Zhang, C. L., Xiang, Z. Q., et al., 2013. Zircon and Baddeleyite U-Pb Geochronology of the Shennongjia Group in the Yangtze Craton and Its Tectonic Significance. Acta Petrologica Sinica, 29(2): 673–697 (in Chinese with English Abstract)Google Scholar
  28. Li, Q., Leng, J., 1991. The Upper Precambrian in the Shennongjia Region. Tianjin Science and Technology Press, Tianjin. 354 (in Chinese)Google Scholar
  29. Lu, S. S., Qiu, X. T., Tang, J. J., et al., 2016. The Pb-Pb Isochron Age of the Kuangshishan Formation in Shennongjia Area on the Northern Margin of theYangtze Craton and Its Geological Implications. Earth Science, 41(2): 317–324CrossRefGoogle Scholar
  30. Ohno, T., Komiya, T., Ueno, Y., et al., 2008. Determination of 88Sr/86Sr Mass-Dependent Isotopic Fractionation and Radiogenic Isotope Variation of 87Sr/86Sr in the Neoproterozoic Doushantuo Formation. Gondwana Research, 14(1–2): 126–133. doi: 10.1016/ Scholar
  31. Peng Y., Peng Y. B., Lang, X. G., et al., 2016. Marine Carbon-Sulfur Biogeochemical Cycles during the Steptoean Positive Carbon Isotope Excursion (SPICE) in the Jiangnan Basin, South China. Journal of Earth Science, 26(2): 242–254CrossRefGoogle Scholar
  32. Plummer, P. S., 1978. Note on the Palaeoenvironmental Significance of the Nuccaleena Formation (Upper Precambrian), Central Flinders Ranges, South Australia. Journal of the Geological Society of Australia, 25(7–8): 395–402. doi: 10.1080/00167617808729049CrossRefGoogle Scholar
  33. Qiu, X., Ling, W., Liu, X., et al., 2011. Recognition of Grenvillian Volcanic Suite in the Shennongjia Region and Its Tectonic Significance for the South China Craton. Precambrian Research, 191(3–4): 101–119. doi: 10.1016/j.precamres.2011.09.011CrossRefGoogle Scholar
  34. Rose, C. V., Maloof, A. C., 2010. Testing Models for Post-Glacial ‘Cap Dolostone’ Deposition: Nuccaleena Formation, South Australia. Earth and Planetary Science Letters, 296(3–4): 165–180. doi: 10.1016/j.epsl.2010.03.031CrossRefGoogle Scholar
  35. Sawaki, Y., Ohno, T., Tahata, M., et al., 2010. The Ediacaran Radiogenic Sr Isotope Excursion in the Doushantuo Formation in the Three Gorges Area, South China. Precambrian Research, 176(1–4): 46–64. doi: 10.1016/j.precamres.2009.10.006CrossRefGoogle Scholar
  36. Shen, B., Dong, L., Xiao, S., et al., 2016. Molar Tooth Carbonates and Benthic Methane Fluxes in Proterozoic Oceans. Nature Communications, 7: 1–6. doi: 10.1038/ncomms10317Google Scholar
  37. Shen, B., Xiao, S., Kaufman, A. J., et al., 2008. Stratification and Mixing of a Post-Glacial Neoproterozoic Ocean: Evidence from Carbon and Sulfur Isotopes in a Cap Dolostone from Northwest China. Earth and Planetary Science Letters, 265(1–2): 209–228. doi: 10.1016/j.epsl.2007.10.005CrossRefGoogle Scholar
  38. Shen, Y., Zhang, T., Chu, X., 2005. C-Isotopic Stratification in a Neoproterozoic Postglacial Ocean. Precambrian Research, 137(3–4): 243–251. doi: 10.1016/j.precamres.2005.03.004CrossRefGoogle Scholar
  39. Shields, G. A., Deynoux, M., Strauss, H., et al., 2007. Barite-Bearing Cap Dolostones of the Taoudéni Basin, Northwest Africa: Sedimentary and Isotopic Evidence for Methane Seepage after a Neoproterozoic Glaciation. Precambrian Research, 153(3–4): 209–235. doi: 10.1016/j.precamres.2006.11.011CrossRefGoogle Scholar
  40. Shimura, T., Kon, Y., Sawaki, Y., et al., 2014. In-Situ Analyses of Phosphorus Contents of Carbonate Minerals: Reconstruction of Phosphorus Contents of Seawater from the Ediacaran to Early Cambrian. Gondwana Research, 25(3): 1090–1107. doi: 10.1016/ Scholar
  41. Volkov, I. I., 2000. Dissolved Inorganic Carbon and Its Isotopic Composition in the Waters of Anoxic Marine Basin. Oceanology, 40: 499–502Google Scholar
  42. Wang, H., Li, C., Hu, C., et al., 2015. Spurious Thermoluminescence Characteristics of the Ediacaran Doushantuo Formation (ca. 635–551 Ma) and Its Implications for Marine Dissolved Organic Carbon Reservoir. Journal of Earth Science, 26(6): 883–892. doi: 10.1007/s12583-015-0650-3CrossRefGoogle Scholar
  43. Wang, J., Deng, Q., Wang, Z., et al., 2013. New Evidences for Sedimentary Attributes and Timing of the “Macaoyuan Conglomerates” on the Northern Margin of the Yangtze Block in Southern China. Precambrian Research, 235: 58–70. doi: 10.1016/j.precamres.2013.06.003CrossRefGoogle Scholar
  44. Wang, J., Jiang, G., Xiao, S., et al., 2008. Carbon Isotope Evidence for Widespread Methane Seeps in the ca. 635 Ma Doushantuo Cap Carbonate in South China. Geology, 36(5): 347–350. doi: 10.1130/g24513a.1CrossRefGoogle Scholar
  45. Xiao, S., Bao, H., Wang, H., et al., 2004. The Neoproterozoic Quruqtagh Group in Eastern Chinese Tianshan: Evidence for a Post-Marinoan Glaciation. Precambrian Research, 130(1–4): 1–26. doi: 10.1016/j.precamres.2003.10.013CrossRefGoogle Scholar
  46. Ye, Q., Tong, J., Xiao, S., et al., 2015. The Survival of Benthic Macroscopic Phototrophs on a Neoproterozoic Snowball Earth. Geology, 43(6): 507–510. doi: 10.1130/g36640.1CrossRefGoogle Scholar
  47. Zhang, S., Zheng, Y., Wu, Y., et al., 2006a. Zircon U-Pb Age and Hf-O Isotope Evidence for Paleoproterozoic Metamorphic Event in South China. Precambrian Research, 151(3–4): 265–288. doi: 10.1016/j.precamres.2006.08.009CrossRefGoogle Scholar
  48. Zhang, S., Zheng, Y., Wu, Y., et al., 2006b. Zircon U-Pb Age and Hf Isotope Evidence for 3.8 Ga Crustal Remnant and Episodic Reworking of Archean Crust in South China. Earth and Planetary Science Letters, 252(1–2): 56–71. doi: 10.1016/j.epsl.2006.09.027CrossRefGoogle Scholar
  49. Zhao, G., Cawood, P. A., 2012. Precambrian Geology of China. Precambrian Research, 222–223: 13–54. doi: 10.1016/j.precamres.2012.09.017CrossRefGoogle Scholar
  50. Zhou, C. M., Tucker, R., Xiao, S. H., et al., 2004. New Constraints on the Ages of Neoproterozoic Glaciations in South China. Geology, 32(5): 437–440. doi: 10.1130/g20286.1CrossRefGoogle Scholar
  51. Zhou, C., Bao, H., Peng, Y., et al., 2010. Timing the Deposition of 17O-Depleted Barite at the Aftermath of Nantuo Glacial Meltdown in South China. Geology, 38(10): 903–906. doi: 10.1130/g31224.1CrossRefGoogle Scholar
  52. Zhu, M., Zhang, J., Michael, S., et al., 2003. Sinian–Cambrian Stratigraphic Framework for Shallow-to Deep-Water Environments of the Yangtze Platform: An Integrated Approach. Progress in Natural Science, 13(12): 951–960. doi: 10.1080/10020070312331344710CrossRefGoogle Scholar

Copyright information

© China University of Geosciences and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Guangzhe Wang
    • 1
    • 2
  • Jiasheng Wang
    • 1
  • Zhou Wang
    • 1
  • Can Chen
    • 1
  • Junxia Yang
    • 1
  1. 1.State Key Laboratory of Biogeology and Environment Geology, School of Earth SciencesChina University of GeosciencesWuhanChina
  2. 2.Institute of Karst Geology, CAGSKey Laboratory of Karst Ecosystem and Treatment of Rocky Desertification, MLRGuilinChina

Personalised recommendations