Journal of Earth Science

, Volume 28, Issue 2, pp 315–332 | Cite as

Fluid inclusion and geochemistry studies of calcite veins in Shizhu synclinorium, central China: Record of origin of fluids and diagenetic conditions

  • Xiao Wang
  • Jian Gao
  • Sheng He
  • Zhiliang He
  • Yan Zhou
  • Ze Tao
  • Jiankun Zhang
  • Yi Wang
Sedimentology and Basin Dynamics
  • 78 Downloads

Abstract

Calcite veins in carbonate fracture have been investigated by petrographic, fluid inclusion, geochemical analyses and coupled with basin modeling techniques to provide useful insights into fluid activity and deformation conditions of the Cambrian to Triassic Shizhu synclinorium from the western region of Mid-Yangtze, central China. The results of the fluid inclusion microthermometry show a wide range of homogenization temperatures (78.6-215.5 °C) and salinities (0.18-23.11 wt.% NaCl equivalent), indicating the formation under diverse fluid conditions. All the calcite veins have negative Ce anomalies, which are the typical characteristic of marine carbonate sediments; it is therefore plausible that calcite veins were precipitated from the marine basin fluid. The stable carbon iso-topic compositions of calcites (δ 13CV-PDB=-2.5‰-4.26‰) and host limestones (δ 13CV-PDB=-3.56‰-5.80‰) are very similar with a correlation coefficient of 0.86, however, four calcites from the Lower Permian and Lower Triassic show lower δ 13C values relative to the host limestones, and they are depleted in total REE concentrations (ΣREE ratio varies from 0.74 to 2.06), suggesting the derivation of dissolved carbon from marine carbonates hosting the calcite veins and, less commonly, from the degradation of organic matter. Calculated δ 18O of the fluids-precipitating calcites (δ 18OV-SMOW=-0.41‰-14.42‰), 87Sr/86Sr ratios varying in the range of coeval seawater and the distinct REE pattern simultaneously suggest calcite-forming fluids in each stratigraphic unit could have formed from the involvement of fluids that originated from coeval seawater and evolved through different degrees of water rock interaction. However, the presence of more radiogenic 87Sr/86Sr ratios than coeval seawater and pronounced positive Eu anomalies in calcites of Lower to Middle Ordovician rocks indicate that terrestrial input from upper strata mudstone and siliciclastic rocks could be involved in the precipitation of the Ordovician calcite. Fluid-inclusion data combined with burial and thermal history modeling indicate there was large-scale flow of evolved basinal fluids through the carbonate formation fractures spanning a time frame from 135 to 50 Ma (Early Cretaceous-Eocene). Therefore, the geochemical characteristics of calcite veins can provide the basis for deformation events in Late Yanshanian and Early Himalayan orogeny.

Key Words

Mid-Yangtze marine carbonate fluid flow calcite veins fluid inclusions geochemistry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This study was supported by the National Natural Science Foundation of China (No. 41672139), and also supported by Grant (No. 2017ZX05005-001-008) from the National Key Scientific Special Project of China. Additional supports were provided by the Programme of Introducing Talents of Discipline to Universities (No. B14031). The final publication is available at Springer via http://dx.doi.org/10.1007/s12583-016-0921-7.

References Cited

  1. Abdalla, Y. M., Michael, J. P., William, A. A., et al., 1999. Modeling Petroleum Generation in the Southern Muglad Rift Basin, Sudan. AAPG Bulletin, 83(12): 1943–1964Google Scholar
  2. Agosta, F., Kirschner, D. L., 2003, Fluid Conduits in Carbonate-Hosted Seismogenic Normal Faults of Central Italy. Journal of Geophysical Research, 108(B4): 2221–2233. doi: 10.1029/2002jb002013CrossRefGoogle Scholar
  3. Al-Aasm, I., Veizer, J., 1986. Diagenetic Stabilization of Aragonite and Low-Mg Calcite-2: Stable Isotopes in Rudists. Journal of Sedimentary Research, 56(6): 763–770. doi: 10.2110/jsr.56.763CrossRefGoogle Scholar
  4. Barker, S. L. L., Cox, S. F., Egginns, S. M., et al., 2006. Microchemical Evidence for Episodic Growth of Antitaxial Veins during Fracture-Controlled Fluid Flow. Earth and Planetary Science Letters, 250(1–2): 331–344. doi: 10.1016/j.epsl.2006.07.051CrossRefGoogle Scholar
  5. Barker, Ch. E., Goldstein, R. H., 1990. Fluid-Inclusion Technique for Determining Maximum Temperature in Calcite and Its Comparison to the Vitrinite Reflectance Geothermometer. Geology, 18(10): 1003–1006. doi: 10.1130/0091-7613(1990)018<1003:fitfdm>2.3.co;2CrossRefGoogle Scholar
  6. Bau, M., 1991. Rare Earth Element Mobility during Hydrothermal and Metamorphic Fluid-Rock Interaction and Significance of the Oxidation State of Europium. Chemical Geology, 93(3–4): 219–230. doi: 10.1016/0009-2541(91)90115-8CrossRefGoogle Scholar
  7. Bau, M., Alexander, B., 2006. Preservation of Primary REE Patterns without Ce Anomaly during Dolomitization of Mid-Paleoproterozoic Limestone and the Potential Reestablishment of Marine Anoxia Immediately After the “Great Oxidation Event”. South African Journal of Geology, 109(1–2): 81–86. doi: 10.2113/gssajg.109.1-2.81CrossRefGoogle Scholar
  8. Bau, M., Moller, P., 1992. Rare Earth Element Fractionation in Metamorphogenic Hydrothermal Calcite, Magnesite and Siderite. Mineralogy and Petrology, 45: 231–246. doi: 10.1007/bf01163114CrossRefGoogle Scholar
  9. Bebout, G. E., Anastasio, D. J., Holl, J. E., 2001. Synorogenic Crustal Fluid Infiltration in the Idaho-Montana Thrust Belt. Geophysical Research Letters, 28(22): 4295–4298. doi: 10.1029/2001gl013711CrossRefGoogle Scholar
  10. Bethke, C., Marshak, S., 1990. Brine Migrations Across North America-The Plate Tectonics of Groundwater. Annual Reviews in Earth and Planetary Sciences, 18(1): 287–315. doi: 10.1146/annurev.ea.18.050190.001443CrossRefGoogle Scholar
  11. Bodnar, R. J., 1993. Revised Equation and Table for Determining the Freezing Point Depression of H2O-NaCl Solution: Geochimica et Cosmochimica Acta, 57(3): 683–684. doi: 10.1016/0016-7037(93)90378-aCrossRefGoogle Scholar
  12. Burrus, R. C., Cercone, K. R., Harris, P. M., 1985. Timing of Hydrocarbon Migration: Evidence from Fluid Inclusions in Calcite Cements, Tectonics and Burial History, In: Schneidermann, N., Harris, P.M. eds., Carbonate Cements. Soc. Econ. Paleont. Mineral., Spec. Publ, 36: 277–289. doi: 10.2110/pec.85.36.0277CrossRefGoogle Scholar
  13. Burruss, R. C., 1991. Practical Aspects of Fluorescence Microscopy of Petroleum Fluid Inclusions, In: Barker, C.E., Kopp, O.C. eds., Luminescence Microscopy and Spectroscopy: Qualitative and Quantitative Applications. SEPM Short Course, 25: 1–7.Google Scholar
  14. Cai, C. F., Li, K. K., Li H. T., et al., 2008. Evidence for Cross Formational Hot Brine Flow from Integrated 87Sr/86Sr, REE and Fluid Inclusions of the Ordovician Veins in Central Tarim, China. Appl. Geochem. 23(8): 2226–2235. doi: 10.1016/j.apgeochem.2008.03.009CrossRefGoogle Scholar
  15. Clayton, C. J., 1994. Microbial and Organic Processes, In: Parker, A., Sellwood, B.W., eds., Quantatative Diagenesis: Recent Developments an Applications to Reservoir Geology. NATO ASI Series, 453: 125–160. doi: 10.1007/978-94-011-0189-9_4CrossRefGoogle Scholar
  16. Conti, A., Turpin, L., Polino, R., et al., 2001. The Relationship between Evolution of Fluid Chemistry and the Style of Brittle Deformation: Examples from the Northern Apennines (Italy). Tectonophysics, 330(1–2): 103–117. doi: 10.1016/s0040-1951(00)00224-9CrossRefGoogle Scholar
  17. Coplen, T. B., C, Kendall., J, Hopple., 1983. Comparison of Stable Isotope reference Samples. Nature, 302(5905): 236–238. doi: 10.1038/302236a0CrossRefGoogle Scholar
  18. Denison, R. E., Koepnick, R. B., Burke, W. H., et al., 1998. Construction of the Cambrian and Ordovician Seawater 87Sr/86Sr Curve. Chemical Geology, 152(3–4): 325–340. doi: 10.1016/s0009-2541(98)00119-3CrossRefGoogle Scholar
  19. Evans, M. A., Battles, D. A., 1999. Fluid Inclusion and Stable Isotope Analyses of Veins from the Central Appalachian Valley and Ridge Province: Implications for Regional Synorogenic Hydrologic Structure and Fluid Migration. Geological Society of America Bulletin, 111(12): 1841–1860. doi: 10.1130/0016-7606(1999)111<1841:fiasia>2.3.co;2CrossRefGoogle Scholar
  20. Eichhubl, P., Boles, J. R., 2000. Focused Fluid Flow along Faults in the Monterey Formation, Coastal California. Geological Society of America Bulletin, 112(11): 1667–1679. doi: 10.1130/0016-7606(2000)112 <1667:fffafi>2.0.co;2CrossRefGoogle Scholar
  21. Evans, M. A., 1994. Joints and Decollement Zones in the Middle Devonian Shales: Evidence for Multiple Deformation Events in the Central Appalachian Plateau. Geological Society of America Bulletin, 106(4): 447–460. doi: 10.1130/0016-7606(1994)106<0447:jadczi>2.3.co;2CrossRefGoogle Scholar
  22. Evans, M., 1995. Fluid Inclusions in Veins from the Middle Devonian Shales: A Record of Deformation Conditions and Fluid Evolution in the Appalachian Plateau. Geological Society of America Bulletin, 107: 327–339.CrossRefGoogle Scholar
  23. Falvey, D. A., Middleton, M. F., 1981. Passive Continental Margins: Evidence for a Prebreakup Deep Crustal Metamorphic Subsidence Mechanism. Oceanologica Acta, 4 (Suppl.): 103–114Google Scholar
  24. Foreman, J. L., Dunne, W. M., 1991. Conditions of Vein Formation in the Southern Appalachian Foreland: Constraints from Vein Geometries and Fluid Inclusions. Journal of Structural Geology, 13(10): 1173–1183. doi: 10.1016/0191-8141(91)90076-uCrossRefGoogle Scholar
  25. Gao, J., He, S., He, Z. L., et al., 2014. Genesis of Calcite Vein and Its Implication to Petroleum Preservation in Jingshan Region, Mid-Yangtze. Oil & Gas Geology, 35(1): 33–41.Google Scholar
  26. Garven, A., 1989. Hydrogeologic Model of the Formation of the Giant Oil Sands Deposits of the Western Canada Sedimentary Basin. Economic Geology, 289(2): 105–166. doi: 10.2475/ajs.289.2.105Google Scholar
  27. Gayer, R., Garven, G., Rickard, D., 1998. Fluid Migration and Coalrank Development in Foreland Basin. Geology, 26(8): 679–682. doi: 10.1130/0091-7613(1998)026<0679:fmacrd>2.3.co;2CrossRefGoogle Scholar
  28. Goldstein, R. H., Reynolds, T. J., 1994. Systematics of Fluid Inclusions in Diagenetic Minerals: SEPM (Society for Sedimentary Geology) Short Course, 31: 199Google Scholar
  29. Guo, Z., Deng, K., Han, Y., 1996. Formation and Evolution of the Sichuan Basin. Geological Publishing House (in Chinese), Beijng.Google Scholar
  30. Grover, G., Read, J.F., 1983. Paleoaquifer and Deep Burial Related Cements Defined by Regional Cathodoluminescent Pattern, Middle Ordovician Carbonates, Virginia. American Association of Petroleum Geologists Bulletin, 67: 1275–1303Google Scholar
  31. Guilhaumou, N., Touray, J. C., Perthuisot, V., 1996. Paleocirculation in the Basin of Southeastern France Subalpine Range: A Synthesis from Fluid Inclusion Studies. Marine Petroleum Geology, 13(6): 695–706. doi: 10.1016/0264-8172(95)00064-xCrossRefGoogle Scholar
  32. Hanor, J. S., Sassen, R., 1990. Evidence for Large-Scale Vertical and Lateral Migration of Formation Waters, Dissolved Salt, and Crude Oil in the Louisiana Gulf Coast. In: Schumacher, D. Perkins, B. F., eds., Gull Coast Oil and Gases: Their Characteristics, Origin, Distribution, and Exploration and Production Significance. Proc. 9th Annu. Res. Conf. Gulf Coast Sect. Soc, Econ. Paleo, Min. Foundation. 293–296Google Scholar
  33. He, S., Gao, J., Zhang, J. K., 2014. The Comparative Study of Fluid Storage Unit in the Western Middle-Yangtze Plate. Research Report, China University of GeosciencesGoogle Scholar
  34. He, Z. L., Wang, X. W., Li, S. J., et al., 2011. Yanshan Movement and Its Influence on Petroleum Preservation in Middle-Upper Yangtze Region. Petroleum Geology & Experiment, 33(1): 1–11.Google Scholar
  35. Hickman, S., R, Sibson., R, Bruhn. eds., 1995. Mechanical Involvement of Fluids in Faulting. Journal of Geophysical Research, 12: 831–838. doi: 10.1029/95jb01121Google Scholar
  36. Hudson, J. D., 1977. Stable Isotopes and Limestone Lithifications. Journal of the Geological Society (London), 133(6): 637–660. doi: 10.1144/gsjgs.133.6.0637CrossRefGoogle Scholar
  37. Irwin, H., Curtis, C. D., Colman, M., 1977. Isotopic Evidence for Source of Digenetic Carbonates Formed during Burial of Organic Rich Sediments. Nature, 269(5626): 209–213. doi: 10.1038/269209a0CrossRefGoogle Scholar
  38. Jarvis, G. T., Mckenzie, D. P., 1980. Sedimentary Basin Formation with Finite Extension Rates. Earth Planetary Science Letters 48(1): 42–52. doi: 10.1016/0012-821x(80)90168-5CrossRefGoogle Scholar
  39. Katz, D. A., Eberli, G. P., Swart, P. K., et al., 2006. Tectonic-Hydrothermal Brecciation Associated with Calcite Precipitation and Permeability Destruction in Mississippian Carbonate Reservoirs, Montana and Wyoming. American Association of Petroleum Geologists Bulletin, 90(11): 1803–1841. doi: 10.1306/03200605072CrossRefGoogle Scholar
  40. Kerrich, R., La Tour, T. E., Willmore, L., 1984. Fluid Participation in Deep Fault Zones: Evidence from Geological, Geochemical, and 18O/16O Relations. Journal of Geophysical Research, 89(B6): 4331–4343. doi: 10.1029/jb089ib06p04331CrossRefGoogle Scholar
  41. Kerrich, R., 1986. Fluid Infiltration into Fault Zones: Chemical, Isotopic, and Mechanical Effects. Pure and Applied Geophysics, 124(1–2): 226–268. doi: 10.1007/bf00875727Google Scholar
  42. Kerrich, R., Hyndman, D., 1986. Thermal and Fluid Regimes in the Bitterrot Lobe-Sapphire Block Detachment Zone, Montana: Evidence from 18O/16O and Geologic Relations. Geological Society of America Bulletin, 97(2): 147–155. doi: 10.1130/0016-7606(1986)97<147:tafrit>2.0.co;2CrossRefGoogle Scholar
  43. Kyser, T. K., Kerrich, R., 1990. Geochemistry of Fluids in Tectonically Active Crustal Regions. In: Nesbitt, B.E. ed., Short Course on Fluids in Tectonically Active Regimes of the Continental Crust. Mineral. Assoc. Canada Short Course Handbook, 18: 133–230Google Scholar
  44. Lawler, J. P., Crawford, M. L., 1983. Stretching of Fluid Inclusions Resulting from a Low-Temperature Microthermometric Technique. Economic Geology, 78(3): 527–529. doi: 10.2113/gsecongeo.78.3.527CrossRefGoogle Scholar
  45. Lee, S. G., Lee, D. H., Kim, Y., et al., 2003. Rare Earth Elements as Indicators of Graoundwater Environmemnt Changes in a Fractured Rock System: Evidence from Fracture-Filling Calcite. Applied Geochemistry, 18(1): 135–143. doi: 10.1016/s0883-2927(02)00071-9CrossRefGoogle Scholar
  46. Li, K. K., Cai, C. F., Jiang, L., et al., 2012. Sr Evolution in the Upper Permian and Lower Triassic Carbonates, Northeast Sichuan Basin, China: Constraints from Chemistry, Isotope and Fluid Inclusions. Applied Geochemistry, 27(12): 2409–2424. doi: 10.1016/j.apgeochem.2012.07.013CrossRefGoogle Scholar
  47. Li, Q., Jiang, S. Y., 2016. Trace and Rare Earth Element Characteristics in Fe-Mn Carbonates Associated with Stratiform Ag-Pb-Zn Mineralization from the Lengshuikeng Ore District, Jiangxi Province: Implications for Their Genesis and Depositional Environment. Journal of Earth Science, 27(4): 571–583. doi: 10.1007/s12583-016-0908-9CrossRefGoogle Scholar
  48. Liu, Y. S., Zong, K. Q., Kelemen, P. B., et al., 2008. Geochemistry and Magmatic History of Eclogites and Ultramafic Rocks from the Chinese Continental Scientific Drill Hole: Subduction and Ultrahigh-Pressure Metamorphism of Lower Crustal Cumulates. Chemical Geology, 247(1–2): 133–153. doi: 10.1016/j.chemgeo.2007.10.016CrossRefGoogle Scholar
  49. Li, R. X., Dong, S. W., Lehrmann, D., et al., 2013. Tectonically Driven Organic Fluid Migration in the Dabashan Foreland Belt: Evidenced by Geochemistry and Geothermometry of Vein-Filling Fibrous Calcite with Organic Inclusions. Journal of Asian Earth Sciences, 75: 202–212. doi: 10.1016/j.jseaes.2013.07.026CrossRefGoogle Scholar
  50. Lu, Q. Z., Ma, Y. S., Guo, T. L., et al., 2007. Thermal History and Hydrocarbon Generation History in Western Hubei-Eastern Chongqing Area. Chinese Journal of Geology, 42(1): 189–198Google Scholar
  51. Machel, H. G., 2001. Bacterial and Thermochemical Sulfate Reduction in Diagenetic Settings Old and New Insights. Sedimentary Geology, 140(1–2): 143–175. doi: 10.1016/s0037-0738(00)00176-7CrossRefGoogle Scholar
  52. Meunier, J. D., 1989. Assessment of Low-Temperaturefluid Inclusions in Calcite Using Microthermometry. Economic Geology, 84(1): 167–170. doi: 10.2113/gsecongeo.84.1.167CrossRefGoogle Scholar
  53. Meyers, W. J., 1974. Carbonate Cement Stratigraphy of the Lake Valley Formation (Mississippian) Sacramento Mountains, New Mexico. Journal of Sedimentary Petrology, 44: 837–861. doi: 10.1306/212f6bc2-2b24-11d7-8648000102c1865dGoogle Scholar
  54. Mei, L. F., Liu, Z. Q, Tang, J. G., et al., 2010. Mesozoic Intra-Continental Progressive Deformation in Western Hunan-Hubei-Eastern Sichuan Provinces of China: Evidence from Apatite Fission Track and Balanced Cross-Section. Earth Science—Journal of China University of Geosciences, 35(2): 161–174CrossRefGoogle Scholar
  55. McArthur, J. M., 1994. Recent-Trends in Strontium Isotope Stratigraphy. Terra Nova, 6: 331–358. doi: 10.1111/j.1365-3121.1994.tb00507.xCrossRefGoogle Scholar
  56. Morad, S., Al-Aasm, I. S., Sirat, M., et al., 2010. Vein Calcite in Cretaceous Carbonate Reservoirs of Abu Dhabi: Record of Origin of Fluids and Diagenetic Conditions. Journal of Geochemical Exploration, 106(1): 156–170. doi: 10.1016/j.gexplo.2010.03.002CrossRefGoogle Scholar
  57. Muchez, Ph., Slobodnik, M., Viaene, W. A., et al., 1995. Geochemical Constraints on the Origin of Paleofluids at the Northern Margin of the Variscan Foreland, Southern Belgium. Sedimentary Geology, 96(3–4): 191–200. doi: 10.1016/0037-0738(94)00118-eCrossRefGoogle Scholar
  58. Oliver, J., 1986. Fluids Expelled Tectonically from Orogenic Belts: Their Role in Hydrocarbon Migration and other Geologic Phenomena. Geology, 14(2): 99–102. doi: 10.1130/0091-7613(1986)14<99:fetfob>2.0.co;2CrossRefGoogle Scholar
  59. O'Neil, J. R., Clayton, R. N., Mayeda, T. K., 1969. Oxygen Isotope Fractionation in Divalent Metal Carbonates. The Journal of Chemical Physics, 51(12): 5547–5558CrossRefGoogle Scholar
  60. Pagel, M., Braun, J. J., Disnar, J. R., et al., 1997. Thermal History Constraints from Studies of Organic Matter, Clay Minerals, Fluid Inclusions, and Apatite Fission Tracks at the Ardeche Paleo-Margin (BA1 Drill hole, GPF Program), France. Journal of Sedimentary Research, 67: 235–245. doi: 10.1306/d4268540-2b26-11d7-8648000102c1865dGoogle Scholar
  61. Parnell, J., Honghan, C., Middleton, D., et al., 2000. Significance of Fibrous Mineral Veins in Hydrocarbon Migration: Fluid Inclusion Studies. Journal of Geochemical Exploration, 69–70: 623–627. doi: 10.1016/s0375-6742(00)00040-6CrossRefGoogle Scholar
  62. Prezbindowski, D. R., Larese, R. E., 1987. Experimental Stretching of Fluid Inclusions in Calcite-Implications for Diagenetic Studies. Geology, 15(4): 333–336. doi: 10.1130/0091-7613(1987)15<333:esofii>2.0.co;2CrossRefGoogle Scholar
  63. Sample, J. C., Reid, M. R., 1998. Contrasting Hydrogeologic Regimes along Strike-Slip and Thrust Faults in the Oregon Convergent Margin: Evidence from the Chemistry of Syntectonic Carbonate Cements and Veins. Geological Society of America Bulletin, 110(1): 48–59. doi: 10.1130/0016-7606(1998)110<0048:chrass>2.3.co;2CrossRefGoogle Scholar
  64. Slobodinik, M., Muchez, P., Kral, J., et al., 2006. Variscan Veins: Record of Fluid Corculation and Variscan Tectonothermal Events in Upper Palaeozoic Limestones of the Moravian Karst, Czech Republic. Geological Magazine, 143(4): 491–508. doi: 10.1017/s0016756806001981CrossRefGoogle Scholar
  65. Sheppard, S. M. F., 1986. Characterization and Isotopic Variations in Natural Waters. In: Stable Isotopes in High Temperature Geochemical Processes. Reviews in Mineralogy, 16: 165–183Google Scholar
  66. Shi, H. C., Shi, X. B., Yang, X. Q., et al., 2012. Exhumation Process of the Fangdoushan-Shizhu Fold Belt in Meso-Neozoic and Its Tectonic Significance in Western Hubei-Eastern Chongqing. Progress in Geophysics, 26(6): 1993–2002Google Scholar
  67. Shi, H., Huang, S. J., Shen, L. C., 2002. Stratigraphical Significance of the Strontium Isotopic Curve of the Upper Paleozoic of Sichuan and Guizhou. Journal of Stratigraphy, 26(2): 106–110Google Scholar
  68. Shields, G. A., Carden, G. A., Veizer, J., et al., 2003. Sr, C, and O Isotope Geochemistry of Ordovician Brachiopods: A Major Isotopic Event around the Middle-Late Ordovician Transition. Geochimica et Cosmochimica Acta, 67(11): 2005–2025. doi: 10.1016/s0016-7037(02)01116-xCrossRefGoogle Scholar
  69. Sorkhabi, R. B., 2005. Geochemical Signatures of Fluid Flow in Thrust Sheets: Fluid-Inclusion and Stable Isotope Studies of Calcite Veins in Western Wyoming. Sorkhabi, R. B., Tsuji Y eds., Faults, Fluid Flow, and Petroleum Traps. American Association of Petroleum Geologists Memoir, 85: 251–267Google Scholar
  70. Suchy, V., Heijlen, W., Sykorova, I., 2000. Geochemical Study of Calcite Veins in the Silurian and Devonian of the Barrandian Basin (Czech Republic): Evidence for Widespread Post-Variscan Fluid Flow in the Central Part of the Bohemian Massif. Sedimentary Geology, 131(3): 201–219CrossRefGoogle Scholar
  71. Sverjensky, D. A., 1984. Europium Redox Equilibria in Aqueous-Solution. Earth and Planetary Science Letters, 67(1): 70–78. doi: 10.1016/0012-821x(84)90039-6CrossRefGoogle Scholar
  72. Sianisyan, E. S., Volkov, V. N., 1996. Catagenesis of Deeply Buried Subsurface Waters According to the Data of Fluid Inclusion Research. Litologia i Poleznye Iskopaemye, 3: 235–240 (in Russian)Google Scholar
  73. Ulrich, M. R., Bodnar, R. J., 1988. Systematics of Stretching of Fluid Inclusions; II, Barite at 1 atm Confining Pressure. Economic Geology, 83(5): 1037–1046CrossRefGoogle Scholar
  74. Uysal, T., Zhao, J. X., Golding, S., et al., 2007. Sm-Nd Dating and Rare-Earth Element Tracing of Calcite: Implications for Fluid Flow Events in the Bowen Basin, Australia. Chemical Geology, 238(1–2): 63–71. doi: 10.1016/j.chemgeo.2006.10.014CrossRefGoogle Scholar
  75. Vrolijk, P., 1987. Tectonically Driven Fluid Flow in the Kodiak Accretionary Complex, Alaska. Geology, 15(5): 466–469. doi: 10.1130/0091-7613(1987)15<466:tdffit>2.0.co;2CrossRefGoogle Scholar
  76. Wang, D. Y., 2000. Stable Isotope Geochemistry of Oil and Gas (in Chinese). Petroleum Industry Press, Beijing. 275Google Scholar
  77. Wang, F. R., He, S., Yang, X.Y., 2012. Indication of Calcite Vein Characteristics on Petroleum Preservation in the Chenhutuditang Synclinorium, Middle Yangtze Region, Southern China. Journal of Mineralogy and Petrology, 32: 94–100Google Scholar
  78. Wang, G. Z., Xu, G. S., Yuan, H. F., et al., 2011. Research on Paleo-Fluid Sources and Hydrocarbon Preservation Conditions in Marine Carbonates in the Central Yangtze, China. Petroleum Science, 8(3): 239–250. doi: 10.1007/s12182-011-0141-1CrossRefGoogle Scholar
  79. Wang, J. S., Wen, H. J., Shi, S. H., 2010. Characteristics and Implications of REE, Carbon and Oxygen Isotopes of Hydrothermal Calcite from the Mercury Metallogenic Belt in Hunan and Guizhou Provinces, China. Acta Mineralogica Sinica, 8(3): 239–250.Google Scholar
  80. Wang, H., Wu, Y. B., Qin, Z. W., et al., 2013. Age and Geochemistry of Silurian Gabbroic Rocks in the Tongbai Orogen, Central China: Implications for the Geodynamic Evolution of the North Qinling Arc-Back-Arc System. Lithos, 179: 1–15. doi: 10.1016/j.lithos.2013.07.021CrossRefGoogle Scholar
  81. Wang, W., 2009. Study on the Fluids Characteristics of the Marine Strata in the Middle Yangtze Region and It’s Connection with Hydrocarbon Preservation. [Dissertation], Chengdu University of Technology, Chengdu. (In Chinese with English Abstract)Google Scholar
  82. Webb, G. E., Kamber, B. S., 2000. Rare Earth Elements in Holocene Reefal Microbialites: A New Shallow Seawater Proxy. Geochimica et Cosmochimica Acta, 64(9): 1557–1565. doi: 10.1016/s0016-7037(99)00400-7CrossRefGoogle Scholar
  83. Winter B. L., Johnson C. M., Clark D. L., 1997. Strontium, Neodymium, Andlead Isotope Variations of Authigenic and Silicate Sediment Components from the Late Cenozoic Arctic Ocean: Implications for Sediment Provenance and the Source of Trace Metals in Seawater. Geochim Cosmochim Acta, 61(19): 4181–4200. doi: 10.1016/s0016-7037(97)00215-9CrossRefGoogle Scholar
  84. Xiong, S. F., Yao, S. Z., Gong, Y. J., et al., 2016. Ore Forming Fluid and Thermochemical Sulfate Reduction in the Wusihe Lead Zinc Deposit, Sichuan Province, China. Earth Science, 41(1): 105–120Google Scholar
  85. Xu, Z. Y., Li, D. C., Lu, W. Z., et al., 2004. Pattern Analysis and Genetic Interpretation about the Geotectonics of Yudong (East Chongqing). Geotectonica et Metallogenia, 28: 15–22Google Scholar
  86. Yang, X. Y., He, S., He Z. L., et al., 2013. Characteristics and Pale-Fluid Activity Implications of Fluid-Inclusion and Isotope of Calcite Veins in Jingshan, Northern Mid-Yangtze. Journal of China University of Petroleum (Edition of Natural Sciences), 37(1): 19–26Google Scholar
  87. Yang, J., 2011. Research on Fliud Migration and Transformation of Dolomitereservoirs in Shizhu Synclinore Zone. Master's Thesis, Chengdu University of TechnologyGoogle Scholar
  88. Yuan, Y. S., Ma, Y. S., Hu, S. B., et al., 2006. Present-Day Geothermal Characteristics in South China. Chinese Journal of Geophysics, 49(4): 1118–1126. doi: 10.1002/cjg2.922CrossRefGoogle Scholar
  89. Zhang, J. K., 2014. Thermal Evolution and Reformation Model of the Wufeng-Longmaxi Shales in the West of Middle Yangtze and Its Adjacent Regions: [Dissertation], China University of Geosciences, Wuhan.Google Scholar
  90. Zhang, J. K., He, S., Yi, J. Z., et al., 2014. Rock Thermo-Acoustic Emission and Basin Modeling Technologies Applied to the Study of Maximum Paleotemperatures and Thermal Maturity Histories of the Lower Paleozoic Marine Shales in the West of Middle Yangtze Area. Acta petrolei Sinica, 35(1): 58–67CrossRefGoogle Scholar
  91. Zhao, Z. J., Yu, G., Zhu, Y., et al., 2003. Tectonic Evolution and Its Control over Hydrocarbon in Southern China. Journal of Chengdu University of Technology (Science & Technology Edition), 30(2): 155–168Google Scholar
  92. Zheng, Y. F., Chen, J. F., 2000. Geochemistry of Stable Isotope. Beijing: Science Press, 175–17. (in Chinese)Google Scholar

Copyright information

© China University of Geosciences and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Xiao Wang
    • 1
  • Jian Gao
    • 1
  • Sheng He
    • 1
  • Zhiliang He
    • 2
  • Yan Zhou
    • 2
  • Ze Tao
    • 3
  • Jiankun Zhang
    • 4
  • Yi Wang
    • 5
  1. 1.Key Laboratory of Tectonics and Petroleum Resources of Ministry of EducationChina University of GeosciencesWuhanChina
  2. 2.Research Institute of Petroleum Exploration and ProductionSINOPECBeijingChina
  3. 3.School of Earth and Ocean SciencesCardiff UniversityCardiffUK
  4. 4.Research Institute of Exploration and DevelopmentPetroChina Jidong Oilfield CompanyTangshanChina
  5. 5.Research Institute of Geological Survey in Hubei ProvinceWuhanChina

Personalised recommendations