Journal of Earth Science

, Volume 28, Issue 2, pp 218–228 | Cite as

Petrogenesis of Middle Triassic volcaniclastic rocks from Balochistan, Pakistan: Implications for the break-up of Gondwanaland

  • Rehanul Haq Siddiqui
  • M. Qasim Jan
  • M. Ishaq Kakar
  • Andrew C. Kerr
  • Abdul Salam Khan
  • Ehsanullah Kakar
Petrology and Petrogeochemistry

Abstract

Basaltic volcanic conglomerates near the Wulgai village in Balochistan occur in the undivided sedimentary rock unit of the Bagh complex which is the mélange zone beneath the Muslim Bagh ophiolite. The presence of Middle Triassic grey radiolarian chert within the upper and lower horizon of the conglomerates suggests that the lavas, from which these conglomerates were principally derived, were eroded and re-deposited in the Middle Triassic. The Wulgai conglomerate contains several textural and mineralogical varieties of volcanic rocks, such as porphyritic, glomerophyric, intersertal and vitrophyric basalts. The main minerals identified in these samples are augite, olivine, plagioclase (An35-78) leucite and nosean, with apatite ilmenite, magnetite and hematite occurring as accessory minerals. These rocks are mildly to strongly-alkaline with low Mg# and low Cr, Ni and Co contents suggesting that their parent magma had undergone considerable fractionation prior to eruption. Trace element-enriched mantle-normalized patterns with marked positive Nb anomalies are consistent with 10%-15% melting of an enriched mantle source in a within-plate tectonic setting. It is proposed that this Middle Triassic intra-plate volcanism may represent mantle plume-derived melts related to the Late Triassic rifting of micro-continental blocks (including Afghan, Iran, Karakorum and Lhasa) from the northern margin of Gondwana.

Key Words

Middle Triassic Wulgai volcaniclastics juvenile Ceno-Tethys 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

We are indebted to S. Hassan Gauhar former Director General, Geological Survey of Pakistan for his support and encouragement during field and laboratory research. The final publication is available at Springer via http://dx.doi.org/10.1007/s12583-016-0911-x.

References Cited

  1. Ahmed, Z., McCormick, G. R., 1990. A Newly Discovered Kimberlitic Rock from Pakistan. Mineralogical Magazine, 54(377): 537–546. doi: 10.1180/minmag.1990.054.377.02CrossRefGoogle Scholar
  2. Aitchison, J. C., Ali, J. R., Davis, A. M., 2007. When and Where did India and Asia Collide? Journal of Geophysical Research: Solid Earth, 112(B5): 1978–2012. doi: 10.1029/2006jb004706CrossRefGoogle Scholar
  3. Ansari, M. R., Abedini, M. V., Zadeh, A. D., et al., 2011. Geochemical Constrain on the Early Cretaceous, OIB-Type Alkaline Volcanic Rocks in Kojor Volcanic Field, Central Alborz Mountain, North of Iran. Australian Journal of Basic and Applied Sciences, 5(10): 913–925Google Scholar
  4. Anwar, M., Fatmi, A. N., Hyderi, I. H., 1993. Stratigraphic Analysis of the Permo–Triassic and Lower Middle Jurassic Rocks from the “Axial Belt” Region of the Northern Baloch1stan, Pakistan. The Geological Bulletin of the Punjab University, (28): 1–20Google Scholar
  5. Arevalo, J, R., McDonough, W. F., 2010. Chemical Variations and Regional Diversity Observed in MORB. Chemical Geology, 271(1–2): 70–85. doi: 10.1016/j.chemgeo.2009.12.013CrossRefGoogle Scholar
  6. Baker, B. H., 1987. Outline of the Petrology of the Kenya Rift Alkaline Province. Geological Society London Special Publications, 30(1): 293–311CrossRefGoogle Scholar
  7. Boulin, J., 1981. Structure d’Afghanistan Sutures Periindiennes et Tethys Orientale. CR Academy of Science Paris Series D, 292: 239–242Google Scholar
  8. Boulin, J., 1988. Hercynian and Eocimmerian Events in Afghanistan and Adjoining Regions. Tectonophysics, 148(3–4): 253–278. doi: 10.1016/0040-1951(88)90134-5CrossRefGoogle Scholar
  9. Boulin, J., 1990. Neocimmerian Events in Central and Western Afghanistan. Tectonophysics, 175(4): 285–315. doi: 10.1016/0040-1951(90)90177-aCrossRefGoogle Scholar
  10. Brookfield, M. E., 1993. The Himalayan Passive Margin from Precambrian to Cretaceous Times. Sedimentary Geology, 84(1–4): 1–35. doi: 10.1016/0037-0738(93)90042-4CrossRefGoogle Scholar
  11. Celâl Şengör, A. M., 1979. Mid-Mesozoic Closure of Permo-Triassic Tethys and Its Implications. Nature, 279(5714): 590–593CrossRefGoogle Scholar
  12. Fisk, M. R., Upton, B. G. J., Ford, C. E., 1988. Geochemical and Experimental Study of the Genesis of Magmas of Reunion Island, Indian Ocean. Journal of Geophysical Research, 93(B5): 4933. doi: 10.1029/jb093ib05p04933CrossRefGoogle Scholar
  13. Fitton, J. G., Saunders, A. D., Norry, M. J., et al., 1997. Thermal and Chemical Structure of the Iceland Plume. Earth and Planetary Science Letters, 153(3–4): 197–208. doi: 10.1016/s0012-821x(97)00170-2CrossRefGoogle Scholar
  14. Floyd, P. A., 1991. Oceanic Islands and Seamounts. In Oceanic Basalts: Springer Netherlands. doi: 10.1007/978-1-4615-3540-9-9.Google Scholar
  15. Frey, F. A., Green, D. H., Roy, S. D., 1978. Integrated Model for Basalt Petrogenesis: A Study of Quartz Tholeiites to Olivine Melilite from Southeastern Australia, Utilizing Geochemical and Experimental Petrological Data. Journal of Petrology, 19(3): 463–513. doi: 10.1093/petrology/19.3.463CrossRefGoogle Scholar
  16. Gansser, A., 1979. Reconnaissance Visit to the Ophiolites in Baluchistan, In: Farah, A, DeJong, K. A., eds., Geodynamics of Pakistan: 193–213Google Scholar
  17. Gill, J. B., 1981. Orogenic Andesites and Plate Tectonics, Springer, Berlin. 189. doi: 10.1007/978-3-642-68012-0CrossRefGoogle Scholar
  18. Govindaraju, K., 1989. Working Group on Analytical Standards of Minerals, Ores and Rocks. Geostandards Newsletter, Special Issue, 13: 114Google Scholar
  19. Green, D. H., 1976. Experimental Studies on a Modal Upper Mantle Composition at High Pressure under Water Saturated and Water under Saturated Condtions. Canadian Mineralogist, 14: 255–268Google Scholar
  20. Green, O. R., Searle, M. P., Corfield, R. I., et al., 2008. Cretaceous-Tertiary Carbonate Platform Evolution and the Age of the India-Asia Collision Along the Ladakh Himalaya (Northwest India). The Journal of Geology, 116(4): 331–353. doi: 10.1086/588831CrossRefGoogle Scholar
  21. Hanson, G. N., Langmuir, C. H., 1978. Modelling of Major Elements in Mantle-Melts Systems Using Trace Element Approaches. Geochimca et Cosmochem Acta, 42(6): 725–742. doi: 10.1016/0016-7037(78)90090-xCrossRefGoogle Scholar
  22. Hastie, A. R., Kerr, A. C., Pearce, J. A., et al., 2007. Classification of Altered Volcanic Island Arc Rocks Using Immobile Trace Elements: Development of the Th-Co Discrimination Diagram. Journal of Petrology, 48(12): 2341–2357. doi: 10.1093/petrology/egm062CrossRefGoogle Scholar
  23. Humphris, S. E., Thompson, G., Schilling, J. G., et al., 1985. Petrological and Geochemical Variation along the Mid Atlantic Ridge between 46 ºS and 32 ºS: Influence of Tristen Da Cunha Mantle Plume. Geochemica Acta, 49: (6): 1445–1464. doi: 10.1016/0016-7037(85)90294-7CrossRefGoogle Scholar
  24. Jones, A. G., 1961. Reconnaissance Geology of Part of West Pakistan. A Colombo Plan Cooperative Project, Government of Canada, Toronto. 550Google Scholar
  25. Kakar, M. I., Kerr, A. C., Mahmood, K., et al., 2014. Supra-subduction Zone Tectonic Setting of the Muslim Bagh Ophiolite, Northwestern Pakistan: Insights from Geochemistry and Petrology. Lithos, 202(4): 190–206. doi: 10.1016/j.lithos.2014.05.029CrossRefGoogle Scholar
  26. Kakar, M. I., Collins, A. S., Mahmood, K., et al., 2012. U-Pb Zircon Crystallization Age of the Muslim Bagh Ophiolite: Enigmatic Remains of an Extensive Pre-Himalayan Arc. Geology, 40(12): 1099–1102CrossRefGoogle Scholar
  27. Kazmin, V. G., 1991. Collision and Rifting in the Tethyan Ocean: Geodynamic Implications. Tectonophysics, 196: (3–4): 371–384. doi: 10.1016/0040-1951(91)90331-lCrossRefGoogle Scholar
  28. Kerr, A. C., 2014. Oceanic Plateaus. In: Holland, H. C., Turekian K. eds., Treatise on Geochemistry 2nd Edition. Elsevier. 631–667.Google Scholar
  29. Kerr, A. C., Khan, M., Mahoney, J. J., et al., 2010. Late Cretaceous Alkaline Sills of the South Tethyan Suture Zone, Pakistan: Initial Melts of the Réunion Hotspot? Lithos, 117(1–4): 161–171. doi: 10.1016/j.lithos.2010.02.010CrossRefGoogle Scholar
  30. Kimura, K., Mengal, J. M., Siddiqui, M. R. H., et al., 1993. Geology of the Muslim Bagh Ophiolite and Associated Bagh Complex in Northwestern Balochistan, Pakistan. Proceedings of Geoscience Colloquium, 5: 36Google Scholar
  31. Kojima, S., Naka, T., Kimura, K., et al., 1994. Mesozoic Radiolarians from the Bagh Complex in the Muslim Bagh Area Pakistan: Their Significance in Reconstructing the Geologic History of Ophiolites Along the Neo Tethys Suture Zone. Bulletin Geological Survey of Japan, 45(2): 63–97Google Scholar
  32. Luo, T., Chen, S., Liao, Q. A., et al., 2016. Geochronology, Geochemistry and Geological Significance of the Late Carboniferous Bimodal Volcanic Rocks in the Eastern Junggar. Earth Science, 41(11): 1845–1862Google Scholar
  33. Mahoney, J. J., Duncan, R. A., Khan, W., et al., 2002. Cretaceous Volcanic Rocks of the South Tethyan Suture Zone, Pakistan: Implications for the Réunion Hotspot and Deccan Traps. Earth and Planetary Science Letters, 203(1): 295–310CrossRefGoogle Scholar
  34. Mengal, J. M., Kimura, K., Siddiqui, M. R. H., et al., 1994. The Lithology and Structure of a Mesozoic Sedimentary-Igneous Assemblage Beneath the Muslim Bagh Ophiolite, Northern Balochistan, Pakistan, Bulletin of Geological Survey of Japan, 45: 51–61Google Scholar
  35. Meschede, M., 1986. A Method of Discriminating between Different Types of Mid-Oceanic Ridge Basalts and Continental Tholeiites with the Nb-Zr-Y Diagram. Chemical Geology, 56(3/4): 207–218. doi: 10.1016/0009-2541(86)90004-5CrossRefGoogle Scholar
  36. Metcalfe, I., 1995. Gondwana Dispersion and Asian Accretion. Journal of Geology Series B: 223–266Google Scholar
  37. Naka, T., Kimura, K., Mengal, J. M., et al., 1996. Mesozoic Sedimentary-Igneous Complex, Bagh Complex in Muslim Bagh Area, Pakistan. Proceedings of Geoscience Colloquium, 16: 47–94Google Scholar
  38. Otsuki, K., Anwar, M., Mengal, J. M, et al., 1989. Breakup of Gondwanaland and Emplacement of Ophiolite Complex in Muslim Bagh Area Balochistan, Pakistan. Hiroshima University Special Publication, 33–57Google Scholar
  39. Pearce, J. A., 1982. Trace Elements Characteristics of Lavas from Destructive Plate Boundaries. In: Throp, R. S., ed., Andesites: Orogenic Andesites and Related Rocks, John Wiley and Sons, New York. 525–548Google Scholar
  40. Pearce, J. A., 1996. A User's Guide to Basalt Discrimination Diagrams. In: Bailes, A. H., Christiansen, E. H., Galley, A. G., et al., eds., Trace Element Geochemistry of Volcanic Rocks; Applications for Massive Sulphide Exploration, Geological Association of Canada, 12(1): 79–113Google Scholar
  41. Pearce, J. A., Cann, J. R., 1973. Tectonic Setting of Basic Volcanic Rocks Determined Using Trace Elements Analysis. Earth and Planetary Science Letters, 19(2): 290–300. doi: 10.1016/0012-821x(73)90129-5CrossRefGoogle Scholar
  42. Pearce, J. A., Gale, G. H., 1977. Identification of Ore-Deposition Environment from Trace-Element Geochemistry of Associated Igneous Host Rocks: Geological Society London, Special Publication, 7(1): 14–24. doi: 10.1144/gsl.sp.1977.007.01.03CrossRefGoogle Scholar
  43. Pearce, J. A., Norry, M., 1979. Petrogenetic Implications of Ti, Zr, Y and Nb Variation in Volcanic Rocks. Contribution to Mineralogy and Petrology, 69(1): 33–47. doi: 10.1007/bf00375192CrossRefGoogle Scholar
  44. Perfit, M. R., Gust, D. A., Bence, A. E., et al., 1980. Chemical Characteristics of Island Arc Basalts: Implications for Mantle Sources, Chemical Geology, 30(3): 227–256. doi: 10.1016/0009-2541(80)90107-2CrossRefGoogle Scholar
  45. Price, R. C., Johnson, R. W., Gray, C. Met al., 1985. Geochemistry of Phonolites and Trachytes from the Summit Region of Mt. Kenya. Contribution to Mineralogy and Petrology, 89(4): 394–409. doi: 10.1007/bf00381560CrossRefGoogle Scholar
  46. Rehman, H. U., Seno, T., Yamamoto, H. et al., 2011. Timing of collision of the Kohistan-Ladakh Arc with India and Asia: Debate. Island Arc, 20(3): 308–328. doi: 10.1111/j.1440-1738.2011.00774.xCrossRefGoogle Scholar
  47. Saunders, A. D., Tarney, J., 1991. Back-Arc Basins. In: Floyd. P. A. ed., Oceanic Basalts. Blackie. 219–263Google Scholar
  48. Sawada, Y., Nageo, K., Siddiqui, R.H., et al., 1995. K-Ar Ages of the Mesozoic Igneous and Metamorphic Rocks from the Muslim Bagh Area, Pakistan. Proceedings of Geoscience Colloquium Geoscience Laboratory, Geological Survey of Pakistan, 12: 73–90Google Scholar
  49. Schilling, J. G., Thompson, G., Kingsley, R., et al., 1985. Hotspot-Migration Ridge Interaction in the South Atlantic. Nature, 313: 187–191CrossRefGoogle Scholar
  50. Schawarzer, R. R., Roger, J. J. W., 1974. A Worldwide Comparison of Alkaline-Olivine Basalt and Their Differentiation Trends. Earth and Planetary Science Letters, 23(3): 286–296. doi: 10.1016/0012-821x(74)90117-4CrossRefGoogle Scholar
  51. Sengör, A. M. C., Altinar, D., Cin, A., et al., 1988. Origin and Assembly of the Tethyside Orogenic Collage at the Expenses of Gondwanaland, In: Charles, M. G. A., Hallan, A., eds., Geological Society Special Publication, 37(1): 119–181Google Scholar
  52. Siddiqui, R. H., Aziz, A., Mengal, J. M., et al., 1996. Geology, Petrochemistry and Tectonic Evolution of Muslim Bagh Ophiolite Complex Balochistan, Pakistan. Geologica, 3: 11–46Google Scholar
  53. Siddiqui, R. H., Brohi I. A., Haidar, N., 2010. Geochemistry, Petrogenesis and Crustal Contamination of Hotspot Related Volcanism on the North Western Margin of Indian Continent and Its Implications for Paleo-sedimentary Environments. Sindh University Research Journal (Science Series), 42(2): 15–34Google Scholar
  54. Siddiqui, R. H., Jan, M. Q., Asif Khan, M., 2012. Petrogenesis of Late Cretaceous Lava Flows from a Ceno-Tethyan Island Arc: The Raskoh Arc, Balochistan, Pakistan. Journal of Asian Earth Sciences, 59(3): 24–38. doi: 10.1016/j.jseaes.2012.05.004CrossRefGoogle Scholar
  55. Siddiqui, R. H., Jan, M. Q., Kakar, M. I., et al., 2016. Late Cretaceous Mantle Plume Activity in Ceno-Tethys: Evidences from the Hamrani Volcanic Rocks, Western Pakistan. Arabian Journal of Geosciences, 9(1), 1–11.CrossRefGoogle Scholar
  56. Siddiqui, R. H., Mengal, J. M., Hoshino, K., et al., 2011. Back-Arc Basin Signatures from the Sheeted Dykes of Muslim Bagh Ophiolite Complex, Balochistan, Pakistan. Sindh University Research Journal, 43(1): 51–62Google Scholar
  57. Staudigel, H., 2003. Hydrothermal Alteration Processes in the Oceanic Crust. Treatise on Geochemistry, 4: 511–535. doi: 10.1016/b0-08-043751-6/03032-2CrossRefGoogle Scholar
  58. Stöcklin, J., 1989. Tethys Evolution in the Afghanistan-Pamir-Pakistan Region. In: Sengör, A. M. C., ed., Tectonic Evolution of the Tethyan Region, 17, Spinger, Netherlands. 241–264 doi: 10.1007/978-94-009-2253-2-13CrossRefGoogle Scholar
  59. Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Ocean Basalt, Implication for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313–345. doi: 10.1144/gsl.sp.1989.042.01.19CrossRefGoogle Scholar
  60. Tatsumi, Y., Eggins, S., 1995. Subduction Zone Magmatism. Blackwell Science, Oxford. 211Google Scholar
  61. Treloar, P. J., Izatt, C. N., 1993. Tectonics of the Himalayan Collision between the Indian Plate and the Afghan Block: A Synthesis: Geological Society, London, Special Publications, 74(1): 69–87. doi: 10.1144/gsl.sp.1993.074.01.06CrossRefGoogle Scholar
  62. Verma, S. P., Guevara, M., Agrawal, S., 2006. Discriminating Four Tectonic Settings: Five New Geochemical Diagrams for Basic and Ultrabasic Volcanic Rocks Based on Log-Ratio Transformation of Major-Element Data. Journal of Earth System Science, 115(5): 485–528. doi: 10.1007/bf02702907CrossRefGoogle Scholar
  63. Weaver, B. L., Tarney, J., Windley, B., 1981. Geochemistry and Petrogenesis of the Fiskenaesset Anorthosite Complex Southern West Greenland: Nature of the Parent Magma. Geochimica et Cosmochimica Acta, 45(5): 711–725. doi: 10.1016/0016-7037(81)90044-2CrossRefGoogle Scholar
  64. Weaver, B. L., Wood, D. A., Tarney, J., et al., 1987. Geochemistry of Ocean Island Basalts from the South Atlantic: Ascension, Bouvet, St. Helena, Gough and Tristan da Cunha, Geological Society, London, Special Publications, 30(1): 253–267. doi: 10.1144/gsl.sp.1987.030.01.11CrossRefGoogle Scholar
  65. Wilkinson, J. F. G., Le Maitre, R. W., 1987. Upper Mantle Amphiboles and Micas and TiO2, K2O and P2O5 Abundances and 100 Mg/(Mg+Fe2+) Ratios of Common Basalts and Undepleted Mantle Compositions. Journal of Petrology, 28(1): 37–73. doi: 10.1093/petrology/28.1.37CrossRefGoogle Scholar
  66. Winchester, J. A., Floyd, P. A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20(4): 325–343. doi: 10.1016/0009-2541(77)90057-2CrossRefGoogle Scholar
  67. Xiong, F. H., Ma, C. Q., Jiang, H. A., 2016. Geochronology and Petrogenesis of Triassic High-K Calc-Alkaline Granodiorites in the East Kunlun Orogen, West China: Juvenile Lower Crustal Melting during Post-Collisional Extension. Journal of Earth Science, 26(3): 474–490CrossRefGoogle Scholar
  68. Zaman, H., Torii, M., 1999. Paleomagnetic Study of Cretaceous Red Beds from the Eastern Hindukush Ranges, Northern Pakistan; Paleoarc Construction of the Kohistan-Karakoram Composite Unit before the India-Asia Collision. Geophysical Journal International, 136(3): 719–738. doi: 10.1046/j.1365-246x.1999.00757.xCrossRefGoogle Scholar

Copyright information

© China University of Geosciences and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Rehanul Haq Siddiqui
    • 1
  • M. Qasim Jan
    • 2
  • M. Ishaq Kakar
    • 3
  • Andrew C. Kerr
    • 4
  • Abdul Salam Khan
    • 3
  • Ehsanullah Kakar
    • 1
  1. 1.Balochistan University of Information TechnologyEngineering and Management SciencesQuettaPakistan
  2. 2.National Centre of Excellence in GeologyUniversity of Peshawar, Pakistan & COMSTECHIslamabadPakistan
  3. 3.Centre of Excellence in MineralogyUniversity of BalochistanQuettaPakistan
  4. 4.School of Earth and Ocean SciencesCardiff UniversityCardiff, WalesUK

Personalised recommendations