Advertisement

The Journal of Physiological Sciences

, Volume 68, Issue 4, pp 307–320 | Cite as

An explanation for sudden death in epilepsy (SUDEP)

  • Mark Stewart
Review
  • 303 Downloads

Abstract

This review traces the examination of autonomic, cardiovascular, and respiratory derangements associated with seizure activity in the clinical and preclinical literature generally, and in the author’s animal model specifically, and concludes with the author’s views on the potential mechanisms for sudden death in epilepsy (SUDEP). An animal model that employs kainic acid-induced seizures on a background of urethane anesthesia has permitted unprecedented access to the behavior of autonomic, cardiovascular, and respiratory systems during seizure activity. The result is a detailed description of the major causes of death and how this animal model can be used to develop and test preventative and interventional strategies. A critical translational step was taken when the rat data were shown to directly parallel data from definite SUDEP cases in the clinical literature. The reasons why ventricular fibrillation as a cause of death is so rarely reported and tools for verifying that seizure-associated laryngospasm can induce obstructive apnea as a cause of death are discussed in detail. Many details of the specific kinetics of activation of brainstem neurons serving autonomic and respiratory function remain to be elucidated, but the boundary conditions described in this review provide an excellent framework for more focused studies. A number of studies conducted in animal models of seizure activity and in epilepsy patients have contributed information on the autonomic, cardiovascular, and respiratory consequences of seizure activity spreading through hypothalamus and brainstem to the periphery. The result is detailed information on the systemic impact of seizure spread and the development of an understanding of the essential mechanistic features of sudden unexpected death in epilepsy (SUDEP). This review summarizes translation of data obtained from animal models to biomarkers that are useful in evaluating data from epilepsy patients.

Keywords

Seizure Laryngospasm Ventricular fibrillation Obstructive apnea 

Notes

Acknowledgements

The author is grateful to his sponsor, Dr. Harumi Hotta of the Tokyo Metropolitan Institute of Gerontology, and for the support of the Japan Society for the Promotion of Science. The research itself was supported with philanthropic contributions, university support, and other sources. This manuscript is an updated review of material that was presented by the author in a number of seminars during the month of March, 2016.

References

  1. 1.
    Nashef L, So EL, Ryvlin P, Tomson T (2012) Unifying the definitions of sudden unexpected death in epilepsy. Epilepsia 53:227–233.  https://doi.org/10.1111/j.1528-1167.2011.03358.x PubMedGoogle Scholar
  2. 2.
    Devinsky O, Hesdorffer DC, Thurman DJ, Lhatoo S, Richerson G (2016) Sudden unexpected death in epilepsy: epidemiology, mechanisms, and prevention. Lancet Neurol 15:1075–1088.  https://doi.org/10.1016/S1474-4422(16)30158-2 PubMedGoogle Scholar
  3. 3.
    Ryvlin P, Nashef L, Lhatoo SD, Bateman LM, Bird J, Bleasel A, Boon P, Crespel A, Dworetzky BA, Hogenhaven H, Lerche H, Maillard L, Malter MP, Marchal C, Murthy JM, Nitsche M, Pataraia E, Rabben T, Rheims S, Sadzot B, Schulze-Bonhage A, Seyal M, So EL, Spitz M, Szucs A, Tan M, Tao JX, Tomson T (2013) Incidence and mechanisms of cardiorespiratory arrests in epilepsy monitoring units (MORTEMUS): a retrospective study. Lancet Neurol 12:966–977.  https://doi.org/10.1016/S1474-4422(13)70214-X PubMedGoogle Scholar
  4. 4.
    Tomson T, Walczak T, Sillanpaa M, Sander JW (2005) Sudden unexpected death in epilepsy: a review of incidence and risk factors. Epilepsia 46(Suppl 11):54–61.  https://doi.org/10.1111/j.1528-1167.2005.00411.x PubMedGoogle Scholar
  5. 5.
    Lathers CM, Schraeder PL, Leestma JE, Wannamaker BB, Verrier RL, Schachter SC (2015) Sudden unexpected death in epilepsy: mechanisms and new methods for analyzing risks. CRC Press, Taylor & Francis Group, Boca RatonGoogle Scholar
  6. 6.
    Pitkänen A, Buckmaster PS, Galanopoulou AS, Moshé SL (2017) Models of seizures and epilepsy. Elsevier/Academic Press, LondonGoogle Scholar
  7. 7.
    Sowers LP, Massey CA, Gehlbach BK, Granner MA, Richerson GB (2013) Sudden unexpected death in epilepsy: fatal post-ictal respiratory and arousal mechanisms. Respir Physiol Neurobiol 189:315–323.  https://doi.org/10.1016/j.resp.2013.05.010 PubMedPubMedCentralGoogle Scholar
  8. 8.
    Faingold CL, Kommajosyula SP, Long X, Plath K, Randall M (2014) Serotonin and sudden death: differential effects of serotonergic drugs on seizure-induced respiratory arrest in DBA/1 mice. Epilepsy Behav 37C:198–203.  https://doi.org/10.1016/j.yebeh.2014.06.028 Google Scholar
  9. 9.
    Tupal S, Faingold CL (2006) Evidence supporting a role of serotonin in modulation of sudden death induced by seizures in DBA/2 mice. Epilepsia 47:21–26PubMedGoogle Scholar
  10. 10.
    Faingold C, Tupal S, N’Gouemo P (2017) Genetic models of reflex epilepsy and SUDEP in rats and mice. In: Pitkänen A, Buckmaster PS, Galanopoulou AS, Moshé SL (eds) Models of seizures and epilepsy, 2nd edn. Elsevier/Academic Press, LondonGoogle Scholar
  11. 11.
    Faingold CL, Randall M, Tupal S (2010) DBA/1 mice exhibit chronic susceptibility to audiogenic seizures followed by sudden death associated with respiratory arrest. Epilepsy Behav 17:436–440.  https://doi.org/10.1016/j.yebeh.2010.02.007 PubMedGoogle Scholar
  12. 12.
    Faingold CL, Tupal S, Randall M (2011) Prevention of seizure-induced sudden death in a chronic SUDEP model by semichronic administration of a selective serotonin reuptake inhibitor. Epilepsy Behav 22:186–190.  https://doi.org/10.1016/j.yebeh.2011.06.015 PubMedGoogle Scholar
  13. 13.
    Feng HJ, Faingold CL (2015) Abnormalities of serotonergic neurotransmission in animal models of SUDEP. Epilepsy Behav.  https://doi.org/10.1016/j.yebeh.2015.06.008 Google Scholar
  14. 14.
    Venit EL, Shepard BD, Seyfried TN (2004) Oxygenation prevents sudden death in seizure-prone mice. Epilepsia 45:993–996PubMedGoogle Scholar
  15. 15.
    Zhong J, Chuang SC, Bianchi R, Zhao W, Paul G, Thakkar P, Liu D, Fenton AA, Wong RK, Tiedge H (2010) Regulatory BC1 RNA and the fragile X mental retardation protein: convergent functionality in brain. PLoS One 5:e15509.  https://doi.org/10.1371/journal.pone.0015509 PubMedPubMedCentralGoogle Scholar
  16. 16.
    Stewart M, Fox SE (1990) Do septal neurons pace the hippocampal theta rhythm? Trends Neurosci 13:163–168PubMedGoogle Scholar
  17. 17.
    Saito T, Sakamoto K, Koizumi K, Stewart M (2006) Repeatable focal seizure suppression: a rat preparation to study consequences of seizure activity based on urethane anesthesia and reversible carotid artery occlusion. J Neurosci Methods 155:241–250PubMedGoogle Scholar
  18. 18.
    Stewart M (2011) The urethane/kainate seizure model as a tool to explore physiology and death associated with seizures. In: Lathers CM, Schraeder PL, Bungo MW, Leetsma JE (eds) Sudden death in epilepsy: forensic and clinical issues. Taylor & Francis Group, Boca RatonGoogle Scholar
  19. 19.
    Stewart M, Goodman J (2017) Monitoring cardiorespiratory and other physiological parameters during seizures in small animals. In: Pitkänen A, Buckmaster PS, Galanopoulou AS, Moshé SL (eds) Models of seizures and epilepsy, 2nd edn. Elsevier/Academic Press, LondonGoogle Scholar
  20. 20.
    Nakase K, Kollmar R, Lazar J, Arjomandi H, Sundaram K, Silverman J, Orman R, Weedon J, Stefanov D, Savoca E, Tordjman L, Stiles K, Ihsan M, Nunez A, Guzman L, Stewart M (2016) Laryngospasm, central and obstructive apnea during seizures: defining pathophysiology for sudden death in a rat model. Epilepsy Res 128:126–139.  https://doi.org/10.1016/j.eplepsyres.2016.08.004 PubMedGoogle Scholar
  21. 21.
    Wijdicks EF (2013) The multifaceted care of status epilepticus. Epilepsia 54(Suppl 6):61–63.  https://doi.org/10.1111/epi.12280 PubMedGoogle Scholar
  22. 22.
    Wijdicks EF, Hubmayr RD (1994) Acute acid-base disorders associated with status epilepticus. Mayo Clin Proc 69:1044–1046PubMedGoogle Scholar
  23. 23.
    Canteras NS, Swanson LW (1992) Projections of the ventral subiculum to the amygdala, septum, and hypothalamus: a PHAL anterograde tract-tracing study in the rat. J Comp Neurol 324:180–194.  https://doi.org/10.1002/cne.903240204 PubMedGoogle Scholar
  24. 24.
    Kishi T, Tsumori T, Ono K, Yokota S, Ishino H, Yasui Y (2000) Topographical organization of projections from the subiculum to the hypothalamus in the rat. J Comp Neurol 419:205–222PubMedGoogle Scholar
  25. 25.
    Kishi T, Tsumori T, Yokota S, Yasui Y (2006) Topographical projection from the hippocampal formation to the amygdala: a combined anterograde and retrograde tracing study in the rat. J Comp Neurol 496:349–368.  https://doi.org/10.1002/cne.20919 PubMedGoogle Scholar
  26. 26.
    Tsumori T, Yokota S, Kishi T, Qin Y, Oka T, Yasui Y (2006) Insular cortical and amygdaloid fibers are in contact with posterolateral hypothalamic neurons projecting to the nucleus of the solitary tract in the rat. Brain Res 1070:139–144.  https://doi.org/10.1016/j.brainres.2005.11.040 PubMedGoogle Scholar
  27. 27.
    Jänig W (2006) The integrative action of the autonomic nervous system: neurobiology of homeostasis. Cambridge University Press, CambridgeGoogle Scholar
  28. 28.
    Loewy AD (1990) Central autonomic pathways. In: Loewy AD, Spyer KM (eds) Central regulation of autonomic functions. Oxford University Press, New YorkGoogle Scholar
  29. 29.
    Baumgartner C, Lurger S, Leutmezer F (2001) Autonomic symptoms during epileptic seizures. Epileptic Disord 3:103–116PubMedGoogle Scholar
  30. 30.
    Bromfield EB (1991) Somatosensory, special sensory, and autonomic phenomena in seizures. Semin Neurol 11:91–99PubMedGoogle Scholar
  31. 31.
    Devinsky O (2004) Effects of seizures on autonomic and cardiovascular function. Epilepsy Curr 4:43–46PubMedPubMedCentralGoogle Scholar
  32. 32.
    Goodman JH, Homan RW, Crawford IL (1999) Kindled seizures activate both branches of the autonomic nervous system. Epilepsy Res 34:169–176PubMedGoogle Scholar
  33. 33.
    Mungen B, Berilgen MS, Arikanoglu A (2010) Autonomic nervous system functions in interictal and postictal periods of nonepileptic psychogenic seizures and its comparison with epileptic seizures. Seizure 19:269–273.  https://doi.org/10.1016/j.seizure.2010.04.002 PubMedGoogle Scholar
  34. 34.
    Poh MZ, Loddenkemper T, Reinsberger C, Swenson NC, Goyal S, Madsen JR, Picard RW (2012) Autonomic changes with seizures correlate with postictal EEG suppression. Neurology 78:1868–1876.  https://doi.org/10.1212/WNL.0b013e318258f7f1 PubMedPubMedCentralGoogle Scholar
  35. 35.
    Rett A (1953) The epileptic seizure and the autonomic nervous system. Arztl Wochensch 8:1174–1177PubMedGoogle Scholar
  36. 36.
    Sakamoto K, Saito T, Orman R, Koizumi K, Lazar J, Salciccioli L, Stewart M (2008) Autonomic consequences of kainic acid-induced limbic cortical seizures in rats: peripheral autonomic nerve activity, acute cardiovascular changes, and death. Epilepsia 49:982–996.  https://doi.org/10.1111/j.1528-1167.2008.01545.x PubMedGoogle Scholar
  37. 37.
    Tinuper P, Bisulli F, Cerullo A, Carcangiu R, Marini C, Pierangeli G, Cortelli P (2001) Ictal bradycardia in partial epileptic seizures: autonomic investigation in three cases and literature review. Brain 124:2361–2371PubMedGoogle Scholar
  38. 38.
    Van Buren JM (1958) Some autonomic concomitants of ictal automatism; a study of temporal lobe attacks. Brain 81:505–528Google Scholar
  39. 39.
    Van Buren JM, Ajmone-Marsan C (1960) A correlation of autonomic and EEG components in temporal lobe epilepsy. Arch Neurol 3:683–703Google Scholar
  40. 40.
    Goodman JH, Stewart M, Drislane FW (2008) Autonomic Disturbances. In: Engel J, Pedley TA (eds) Epilepsy: a comprehensive textbook, 2nd edn. Lippincott Williams and Wilkins, PhiladelphiaGoogle Scholar
  41. 41.
    Stewart M (2009) Autonomic consequences of seizures, including sudden unexpected death in epilepsy. In: Schwartzkroin PA (ed) Encyclopedia of basic epilepsy research. Elsevier, AmsterdamGoogle Scholar
  42. 42.
    Leutmezer F, Schernthaner C, Lurger S, Potzelberger K, Baumgartner C (2003) Electrocardiographic changes at the onset of epileptic seizures. Epilepsia 44:348–354PubMedGoogle Scholar
  43. 43.
    Opherk C, Coromilas J, Hirsch LJ (2002) Heart rate and EKG changes in 102 seizures: analysis of influencing factors. Epilepsy Res 52:117–127PubMedGoogle Scholar
  44. 44.
    Nei M, Ho RT, Sperling MR (2000) EKG abnormalities during partial seizures in refractory epilepsy. Epilepsia 41:542–548PubMedGoogle Scholar
  45. 45.
    Rugg-Gunn FJ, Simister RJ, Squirrell M, Holdright DR, Duncan JS (2004) Cardiac arrhythmias in focal epilepsy: a prospective long-term study. Lancet 364:2212–2219.  https://doi.org/10.1016/S0140-6736(04)17594-6 PubMedGoogle Scholar
  46. 46.
    Schuele SU (2009) Effects of seizures on cardiac function. J Clin Neurophysiol 26:302–308.  https://doi.org/10.1097/WNP.0b013e3181b7f13b PubMedGoogle Scholar
  47. 47.
    Nei M, Ho RT, Abou-Khalil BW, Drislane FW, Liporace J, Romeo A, Sperling MR (2004) EEG and ECG in sudden unexplained death in epilepsy. Epilepsia 45:338–345PubMedGoogle Scholar
  48. 48.
    Sevcencu C, Struijk JJ (2010) Autonomic alterations and cardiac changes in epilepsy. Epilepsia.  https://doi.org/10.1111/j.1528-1167.2009.02479.x PubMedGoogle Scholar
  49. 49.
    Tigaran S (2002) Cardiac abnormalities in patients with refractory epilepsy. Acta Neurol Scand Suppl 177:9–32PubMedGoogle Scholar
  50. 50.
    Tigaran S, Molgaard H, McClelland R, Dam M, Jaffe AS (2003) Evidence of cardiac ischemia during seizures in drug refractory epilepsy patients. Neurology 60:492–495PubMedGoogle Scholar
  51. 51.
    Devinsky O, Pacia S, Tatambhotla G (1997) Bradycardia and asystole induced by partial seizures: a case report and literature review. Neurology 48:1712–1714PubMedGoogle Scholar
  52. 52.
    Howell SJ, Blumhardt LD (1989) Cardiac asystole associated with epileptic seizures: a case report with simultaneous EEG and ECG. J Neurol Neurosurg Psychiatry 52:795–798PubMedPubMedCentralGoogle Scholar
  53. 53.
    Kerling F, Dutsch M, Linke R, Kuwert T, Stefan H, Hilz MJ (2009) Relation between ictal asystole and cardiac sympathetic dysfunction shown by MIBG-SPECT. Acta Neurol Scand 120:123–129.  https://doi.org/10.1111/j.1600-0404.2008.01135.x PubMedGoogle Scholar
  54. 54.
    Lanz M, Oehl B, Brandt A, Schulze-Bonhage A (2011) Seizure induced cardiac asystole in epilepsy patients undergoing long term video-EEG monitoring. Seizure 20:167–172.  https://doi.org/10.1016/j.seizure.2010.11.017 PubMedGoogle Scholar
  55. 55.
    Leung H, Kwan P, Elger CE (2006) Finding the missing link between ictal bradyarrhythmia, ictal asystole, and sudden unexpected death in epilepsy. Epilepsy Behav 9:19–30.  https://doi.org/10.1016/j.yebeh.2006.05.009 PubMedGoogle Scholar
  56. 56.
    Rocamora R, Kurthen M, Lickfett L, Von Oertzen J, Elger CE (2003) Cardiac asystole in epilepsy: clinical and neurophysiologic features. Epilepsia 44:179–185PubMedGoogle Scholar
  57. 57.
    Scott CA, Fish DR (2000) Cardiac asystole in partial seizures. Epileptic Disord 2:89–92PubMedGoogle Scholar
  58. 58.
    Smith-Demps C, Jagoda A (1998) A case of seizure-related bradycardia and asystole. Am J Emerg Med 16:582–584PubMedGoogle Scholar
  59. 59.
    Hotta H, Lazar J, Orman R, Koizumi K, Shiba K, Kamran H, Stewart M (2009) Vagus nerve stimulation-induced bradyarrhythmias in rats. Auton Neurosci 151:98–105.  https://doi.org/10.1016/j.autneu.2009.07.008 PubMedGoogle Scholar
  60. 60.
    Hotta H, Watanabe N, Orman R, Stewart M (2010) Efferent and afferent vagal actions on cortical blood flow and kainic acid-induced seizure activity in urethane anesthetized rats. Auton Neurosci 156:144–148.  https://doi.org/10.1016/j.autneu.2010.04.010 PubMedGoogle Scholar
  61. 61.
    Moseley BD, Ghearing GR, Benarroch EE, Britton JW (2011) Early seizure termination in ictal asystole. Epilepsy Res 97:220–224.  https://doi.org/10.1016/j.eplepsyres.2011.08.008 PubMedGoogle Scholar
  62. 62.
    Schuele SU, Bermeo AC, Alexopoulos AV, Burgess RC (2010) Anoxia-ischemia: a mechanism of seizure termination in ictal asystole. Epilepsia 51:170–173.  https://doi.org/10.1111/j.1528-1167.2009.02168.x PubMedGoogle Scholar
  63. 63.
    Lotufo PA, Valiengo L, Bensenor IM, Brunoni AR (2012) A systematic review and meta-analysis of heart rate variability in epilepsy and antiepileptic drugs. Epilepsia 53:272–282.  https://doi.org/10.1111/j.1528-1167.2011.03361.x PubMedGoogle Scholar
  64. 64.
    Naggar I, Stewart M (2015) A rat model for exploring the contributions of ventricular arrhythmias to sudden death in epilepsy. In: Lathers CM, Schraeder PL, Leestma JE, Wannamaker BB, Verrier RL, Schachter SC (eds) Sudden unexpected death in epilepsy: mechanisms and new methods for analyzing risks. Taylor & Francis, RoutledgeGoogle Scholar
  65. 65.
    Thayer JF, Yamamoto SS, Brosschot JF (2010) The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors. Int J Cardiol 141:122–131.  https://doi.org/10.1016/j.ijcard.2009.09.543 PubMedGoogle Scholar
  66. 66.
    Espinosa PS, Lee JW, Tedrow UB, Bromfield EB, Dworetzky BA (2009) Sudden unexpected near death in epilepsy: malignant arrhythmia from a partial seizure. Neurology 72:1702–1703.  https://doi.org/10.1212/WNL.0b013e3181a55f90 PubMedGoogle Scholar
  67. 67.
    Ferlisi M, Tomei R, Carletti M, Moretto G, Zanoni T (2013) Seizure induced ventricular fibrillation: a case of near-SUDEP. Seizure 22:249–251.  https://doi.org/10.1016/j.seizure.2012.12.008 PubMedGoogle Scholar
  68. 68.
    Cunnington C, Garg S, Balachandran KP (2012) Seizure-associated takotsubo cardiomyopathy presenting with unheralded ventricular fibrillation. Int J Cardiol 162:e21–e23.  https://doi.org/10.1016/j.ijcard.2012.05.118 PubMedGoogle Scholar
  69. 69.
    Bardai A, Lamberts RJ, Blom MT, Spanjaart AM, Berdowski J, van der Staal SR, Brouwer HJ, Koster RW, Sander JW, Thijs RD, Tan HL (2012) Epilepsy is a risk factor for sudden cardiac arrest in the general population. PLoS One 7:e42749.  https://doi.org/10.1371/journal.pone.0042749 PubMedPubMedCentralGoogle Scholar
  70. 70.
    Stecker EC, Reinier K, Uy-Evanado A, Teodorescu C, Chugh H, Gunson K, Jui J, Chugh SS (2013) Relationship between seizure episode and sudden cardiac arrest in patients with epilepsy: a community-based study. Circ Arrhythm Electrophysiol 6:912–916.  https://doi.org/10.1161/CIRCEP.113.000544 PubMedGoogle Scholar
  71. 71.
    Naggar I, Uchida S, Kamran H, Lazar J, Stewart M (2012) Autonomic boundary conditions for ventricular fibrillation and their implications for a novel defibrillation technique. J Physiol Sci 62:479–492.  https://doi.org/10.1007/s12576-012-0225-8 PubMedGoogle Scholar
  72. 72.
    Naggar I, Lazar J, Kamran H, Orman R, Stewart M (2014) Relation of autonomic and cardiac abnormalities to ventricular fibrillation in a rat model of epilepsy. Epilepsy Res 108:44–56.  https://doi.org/10.1016/j.eplepsyres.2013.10.018 PubMedGoogle Scholar
  73. 73.
    Fava C, Montagnana M, Favaloro EJ, Guidi GC, Lippi G (2011) Obstructive sleep apnea syndrome and cardiovascular diseases. Semin Thromb Hemost 37:280–297.  https://doi.org/10.1055/s-0031-1273092 PubMedGoogle Scholar
  74. 74.
    Surawicz B (1964) Methods of production of ventricular fibrillation. In: Surawicz B, Pellegrino ED (eds) Sudden cardiac death. Grune & Stratton, New YorkGoogle Scholar
  75. 75.
    Massey CA, Sowers LP, Dlouhy BJ, Richerson GB (2014) Mechanisms of sudden unexpected death in epilepsy: the pathway to prevention. Nat Rev Neurol 10:271–282.  https://doi.org/10.1038/nrneurol.2014.64 PubMedPubMedCentralGoogle Scholar
  76. 76.
    Nashef L, Walker F, Allen P, Sander JW, Shorvon SD, Fish DR (1996) Apnoea and bradycardia during epileptic seizures: relation to sudden death in epilepsy. J Neurol Neurosurg Psychiatry 60:297–300PubMedPubMedCentralGoogle Scholar
  77. 77.
    Bateman LM, Li CS, Seyal M (2008) Ictal hypoxemia in localization-related epilepsy: analysis of incidence, severity and risk factors. Brain 131:3239–3245.  https://doi.org/10.1093/brain/awn277 PubMedPubMedCentralGoogle Scholar
  78. 78.
    Bateman LM, Spitz M, Seyal M (2010) Ictal hypoventilation contributes to cardiac arrhythmia and SUDEP: report on two deaths in video-EEG-monitored patients. Epilepsia.  https://doi.org/10.1111/j.1528-1167.2009.02513.x Google Scholar
  79. 79.
    Seyal M, Bateman LM (2009) Ictal apnea linked to contralateral spread of temporal lobe seizures: intracranial EEG recordings in refractory temporal lobe epilepsy. Epilepsia 50:2557–2562.  https://doi.org/10.1111/j.1528-1167.2009.02245.x PubMedGoogle Scholar
  80. 80.
    Seyal M, Bateman LM, Albertson TE, Lin TC, Li CS (2010) Respiratory changes with seizures in localization-related epilepsy: analysis of periictal hypercapnia and airflow patterns. Epilepsia.  https://doi.org/10.1111/j.1528-1167.2009.02518.x Google Scholar
  81. 81.
    Singh K, Katz ES, Zarowski M, Loddenkemper T, Llewellyn N, Manganaro S, Gregas M, Pavlova M, Kothare SV (2013) Cardiopulmonary complications during pediatric seizures: a prelude to understanding SUDEP. Epilepsia 54:1083–1091.  https://doi.org/10.1111/epi.12153 PubMedPubMedCentralGoogle Scholar
  82. 82.
    Blum AS (2009) Respiratory physiology of seizures. J Clin Neurophysiol 26:309–315.  https://doi.org/10.1097/WNP.0b013e3181b7f14d PubMedGoogle Scholar
  83. 83.
    Uteshev VV, Tupal S, Mhaskar Y, Faingold CL (2010) Abnormal serotonin receptor expression in DBA/2 mice associated with susceptibility to sudden death due to respiratory arrest. Epilepsy Res 88:183–188.  https://doi.org/10.1016/j.eplepsyres.2009.11.004 PubMedGoogle Scholar
  84. 84.
    Schraeder PL, Lathers CM (1983) Cardiac neural discharge and epileptogenic activity in the cat: an animal model for unexplained death. Life Sci 32:1371–1382PubMedGoogle Scholar
  85. 85.
    Paydarfar D, Eldridge FL, Scott SC, Dowell RT, Wagner PG (1991) Respiratory responses to focal and generalized seizures in cats. Am J Physiol 260:R934–R940PubMedGoogle Scholar
  86. 86.
    Johnston SC, Horn JK, Valente J, Simon RP (1995) The role of hypoventilation in a sheep model of epileptic sudden death. Ann Neurol 37:531–537PubMedGoogle Scholar
  87. 87.
    Johnston SC, Siedenberg R, Min JK, Jerome EH, Laxer KD (1997) Central apnea and acute cardiac ischemia in a sheep model of epileptic sudden death. Ann Neurol 42:588–594PubMedGoogle Scholar
  88. 88.
    Villiere SM, Nakase K, Kollmar R, Silverman J, Sundaram K, Stewart M (2017) Seizure-associated central apnea in a rat model: evidence for resetting the respiratory rhythm and activation of the diving reflex. Neurobiol Dis 101:8–15.  https://doi.org/10.1016/j.nbd.2017.01.008 PubMedPubMedCentralGoogle Scholar
  89. 89.
    Zhao H, Lin G, Shi M, Gao J, Wang Y, Wang H, Sun H, Cao Y (2014) The mechanism of neurogenic pulmonary edema in epilepsy. J Physiol Sci 64:65–72.  https://doi.org/10.1007/s12576-013-0291-6 PubMedGoogle Scholar
  90. 90.
    Antoniuk SA, Oliva LV, Bruck I, Malucelli M, Yabumoto S, Castellano JL (2001) Sudden unexpected, unexplained death in epilepsy autopsied patients. Arq Neuropsiquiatr 59:40–45PubMedGoogle Scholar
  91. 91.
    Morentin B, Alcaraz R (2002) Sudden unexpected death in epilepsy in children and adolescents. Rev Neurol 34:462–465PubMedGoogle Scholar
  92. 92.
    Panneton WM (2013) The mammalian diving response: an enigmatic reflex to preserve life? Physiology (Bethesda) 28:284–297.  https://doi.org/10.1152/physiol.00020.2013 Google Scholar
  93. 93.
    Gooden BA (1994) Mechanism of the human diving response. Integr Physiol Behav Sci 29:6–16PubMedGoogle Scholar
  94. 94.
    Golanov EV, Shiflett JM, Britz GW (2016) Diving response in rats: role of the subthalamic vasodilator area. Frontiers in Neurology 7:157.  https://doi.org/10.3389/fneur.2016.00157 PubMedPubMedCentralGoogle Scholar
  95. 95.
    Panneton WM, Gan Q, Juric R (2010) The rat: a laboratory model for studies of the diving response. J Appl Physiol (1985) 108:811–820.  https://doi.org/10.1152/japplphysiol.00600.2009 Google Scholar
  96. 96.
    Panneton WM, Gan Q, Le J, Livergood RS, Clerc P, Juric R (2012) Activation of brainstem neurons by underwater diving in the rat. Front Physiol 3:111.  https://doi.org/10.3389/fphys.2012.00111 PubMedPubMedCentralGoogle Scholar
  97. 97.
    Huang TF, Peng YI (1976) Role of the chemoreceptor in diving bradycardia in rat. Jpn J Physiol 26:395–401PubMedGoogle Scholar
  98. 98.
    Huang TF, Peng YI, Huang LL (1991) The effect of microinjection of amino acids into the nucleus tractus solitarius on the diving bradycardia in the rat. Chin J Physiol 34:167–177PubMedGoogle Scholar
  99. 99.
    Lin YC, Baker DG (1975) Cardiac output and its distribution during diving in the rat. Am J Physiol 228:733–737PubMedGoogle Scholar
  100. 100.
    Brostrom A, Johansson P, Stromberg A, Albers J, Martensson J, Svanborg E (2007) Obstructive sleep apnoea syndrome—patients’ perceptions of their sleep and its effects on their life situation. J Adv Nurs 57:318–327.  https://doi.org/10.1111/j.1365-2648.2006.04110.x PubMedGoogle Scholar
  101. 101.
    Hotta H, Koizumi K, Stewart M (2009) Cardiac sympathetic nerve activity during kainic acid-induced limbic cortical seizures in rats. Epilepsia 50:923–927.  https://doi.org/10.1111/j.1528-1167.2008.01860.x PubMedGoogle Scholar
  102. 102.
    Weiss JW, Tamisier R, Liu Y (2015) Sympathoexcitation and arterial hypertension associated with obstructive sleep apnea and cyclic intermittent hypoxia. J Appl Physiol (1985).  https://doi.org/10.1152/japplphysiol.00315.2015 Google Scholar
  103. 103.
    Stewart M, Kollmar R, Nakase K, Silverman J, Sundaram K, Orman R, Lazar J (2017) Obstructive apnea due to laryngospasm links ictal to postictal events in SUDEP cases and offers practical biomarkers for review of past cases and prevention of new ones. Epilepsia 58:e87–e90PubMedGoogle Scholar
  104. 104.
    Stewart M, Kollmar R, Nakase K, Silverman J, Sundaram K, Orman R, Lazar J, 2016. Practical biomarkers for obstructive apnea in potential sudden death in epilepsy (SUDEP) cases. In: American Epilepsy Society annual meeting, Houston, TXGoogle Scholar
  105. 105.
    Whitehurst LN, Cellini N, McDevitt EA, Duggan KA, Mednick SC (2016) Autonomic activity during sleep predicts memory consolidation in humans. Proc Natl Acad Sci USA 113:7272–7277.  https://doi.org/10.1073/pnas.1518202113 PubMedPubMedCentralGoogle Scholar

Copyright information

© The Physiological Society of Japan and Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physiology and PharmacologyState University of New York Downstate Medical CenterBrooklynUSA
  2. 2.Department of NeurologyState University of New York Downstate Medical CenterBrooklynUSA

Personalised recommendations