The Journal of Physiological Sciences

, Volume 67, Issue 3, pp 345–351 | Cite as

Relationship between cognitive function and regulation of cerebral blood flow

  • Shigehiko Ogoh


Ageing is the primary risk factor for cognitive deterioration. Given that the cerebral blood flow (CBF) or regulation of cerebral circulation is attenuated in the elderly, it could be expected that ageing-induced cognitive deterioration may be affected by a decrease in CBF as a result of brain ischemia and energy depletion. CBF regulation associated with cerebral metabolism thus likely plays an important role in the preservation of cognitive function. However, in some specific conditions (e.g. during exercise), change in CBF does not synchronize with that of cerebral metabolism. Our recent study demonstrated that cognitive function was more strongly affected by changes in cerebral metabolism than by changes in CBF during exercise. Therefore, it remains unclear how an alteration in CBF or its regulation affects cognitive function. In this review, I summarize current knowledge on previous investigations providing the possibility of an interaction between regulation of CBF or cerebral metabolism and cognitive function.


Dementia Cerebral disease Vascular disease Vascular risk factors Autonomic dysfunction Atherosclerosis Neurovascular coupling 



I am grateful to Dr. Shoichi Ando and Dr. Takeshi Hashimoto for their comments.

Compliance with ethical standards


No conflicts of interest, financial or otherwise, are declared by the author.


  1. 1.
    Alirezaei M, Rezaei M, Hajighahramani S, Sookhtehzari A, Kiani K (2017) Oleuropein attenuates cognitive dysfunction and oxidative stress induced by some anesthetic drugs in the hippocampal area of rats. J Physiol Sci 67(1):131–139CrossRefPubMedGoogle Scholar
  2. 2.
    Ando S, Hatamoto Y, Sudo M, Kiyonaga A, Tanaka H, Higaki Y (2013) The effects of exercise under hypoxia on cognitive function. PLoS One 8:e63630CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Brisswalter J, Collardeau M, Rene A (2002) Effects of acute physical exercise characteristics on cognitive performance. Sports Med 32:555–566CrossRefPubMedGoogle Scholar
  4. 4.
    Bundo M, Inao S, Nakamura A, Kato T, Ito K, Tadokoro M, Kabeya R, Sugimoto T, Kajita Y, Yoshida J (2002) Changes of neural activity correlate with the severity of cortical ischemia in patients with unilateral major cerebral artery occlusion. Stroke 33:61–66CrossRefPubMedGoogle Scholar
  5. 5.
    Burns JM, Donnelly JE, Anderson HS, Mayo MS, Spencer-Gardner L, Thomas G, Cronk BB, Haddad Z, Klima D, Hansen D, Brooks WM (2007) Peripheral insulin and brain structure in early Alzheimer disease. Neurology 69:1094–1104CrossRefPubMedGoogle Scholar
  6. 6.
    Cheng D, Noble J, Tang MX, Schupf N, Mayeux R, Luchsinger JA (2011) Type 2 diabetes and late-onset Alzheimer’s disease. Dement Geriatr Cogn Disord 31:424–430CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Craft S, Baker LD, Montine TJ, Minoshima S, Watson GS, Claxton A, Arbuckle M, Callaghan M, Tsai E, Plymate SR, Green PS, Leverenz J, Cross D, Gerton B (2012) Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment: a pilot clinical trial. Arch Neurol 69:29–38CrossRefPubMedGoogle Scholar
  8. 8.
    Daulatzai MA (2012) Dysfunctional nucleus tractus solitarius: its crucial role in promoting neuropathogenetic cascade of Alzheimer’s dementia—a novel hypothesis. Neurochem Res 37:846–868CrossRefPubMedGoogle Scholar
  9. 9.
    de Aquino Lemos V, Antunes HK, dos Santos RV, Lira FS, Tufik S, de Mello MT (2012) High altitude exposure impairs sleep patterns, mood, and cognitive functions. Psychophysiology 49:1298–1306CrossRefGoogle Scholar
  10. 10.
    de Vilhena Toledo MA, Junqueira LF Jr (2008) Cardiac sympathovagal modulation evaluated by short-term heart interval variability is subtly impaired in Alzheimer’s disease. Geriatr Gerontol Int 8:109–118CrossRefPubMedGoogle Scholar
  11. 11.
    Dickinson CJ (2001) Why are strokes related to hypertension? Classic studies and hypotheses revisited. J Hypertens 19:1515–1521CrossRefPubMedGoogle Scholar
  12. 12.
    Duschek S, Muckenthaler M, Werner N, del Paso GA (2009) Relationships between features of autonomic cardiovascular control and cognitive performance. Biol Psychol 81:110–117CrossRefPubMedGoogle Scholar
  13. 13.
    Faraci FM, Baumbach GL, Heistad DD (1990) Cerebral circulation: humoral regulation and effects of chronic hypertension. J Am Soc Nephrol 1:53–57PubMedGoogle Scholar
  14. 14.
    Faraci FM, Heistad DD (1998) Regulation of the cerebral circulation: role of endothelium and potassium channels. Physiol Rev 78:53–97PubMedGoogle Scholar
  15. 15.
    Farkas E, Luiten PG (2001) Cerebral microvascular pathology in aging and Alzheimer’s disease. Prog Neurobiol 64:575–611CrossRefPubMedGoogle Scholar
  16. 16.
    Fujishima M, Ibayashi S, Fujii K, Mori S (1995) Cerebral blood flow and brain function in hypertension. Hypertens Res 18:111–117CrossRefPubMedGoogle Scholar
  17. 17.
    Guaita A, Vaccaro R, Davin A, Colombo M, Vitali SF, Polito L, Abbondanza S, Valle E, Forloni G, Ferretti VV, Villani S (2015) Influence of socio-demographic features and apolipoprotein E epsilon 4 expression on the prevalence of dementia and cognitive impairment in a population of 70–74-year olds: the InveCe.Ab study. Arch Gerontol Geriatr 60:334–343CrossRefPubMedGoogle Scholar
  18. 18.
    Hamzei F, Knab R, Weiller C, Rother J (2003) The influence of extra- and intracranial artery disease on the BOLD signal in FMRI. Neuroimage 20:1393–1399CrossRefPubMedGoogle Scholar
  19. 19.
    Hellstrom G, Fischer-Colbrie W, Wahlgren NG, Jogestrand T (1996) Carotid artery blood flow and middle cerebral artery blood flow velocity during physical exercise. J Appl Physiol 81:413–418 (1985) PubMedGoogle Scholar
  20. 20.
    Hennerici MG (2009) What are the mechanisms for post-stroke dementia? Lancet Neurol 8:973–975CrossRefPubMedGoogle Scholar
  21. 21.
    Hock C, Villringer K, Muller-Spahn F, Wenzel R, Heekeren H, Schuh-Hofer S, Hofmann M, Minoshima S, Schwaiger M, Dirnagl U, Villringer A (1997) Decrease in parietal cerebral hemoglobin oxygenation during performance of a verbal fluency task in patients with Alzheimer’s disease monitored by means of near-infrared spectroscopy (NIRS)–correlation with simultaneous rCBF-PET measurements. Brain Res 755:293–303CrossRefPubMedGoogle Scholar
  22. 22.
    Iadecola C (2004) Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat Rev Neurosci 5:347–360CrossRefPubMedGoogle Scholar
  23. 23.
    Iadecola C, Zhang F, Niwa K, Eckman C, Turner SK, Fischer E, Younkin S, Borchelt DR, Hsiao KK, Carlson GA (1999) SOD1 rescues cerebral endothelial dysfunction in mice overexpressing amyloid precursor protein. Nat Neurosci 2:157–161CrossRefPubMedGoogle Scholar
  24. 24.
    Ide K, Schmalbruch IK, Quistorff B, Horn A, Secher NH (2000) Lactate, glucose and O2 uptake in human brain during recovery from maximal exercise. J Physiol 522(Pt 1):159–164CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Ingwersen J, Defeyter MA, Kennedy DO, Wesnes KA, Scholey AB (2007) A low glycaemic index breakfast cereal preferentially prevents children’s cognitive performance from declining throughout the morning. Appetite 49:240–244CrossRefPubMedGoogle Scholar
  26. 26.
    Jennings JR, Muldoon MF, Ryan C, Price JC, Greer P, Sutton-Tyrrell K, van der Veen FM, Meltzer CC (2005) Reduced cerebral blood flow response and compensation among patients with untreated hypertension. Neurology 64:1358–1365CrossRefPubMedGoogle Scholar
  27. 27.
    Jones EL, Kalaria RN, Sharp SI, O’Brien JT, Francis PT, Ballard CG (2011) Genetic associations of autopsy-confirmed vascular dementia subtypes. Dement Geriatr Cogn Disord 31:247–253CrossRefPubMedGoogle Scholar
  28. 28.
    Katayama K, Ishida K, Saito M, Koike T, Ogoh S (2016) Hypoxia attenuates cardiopulmonary reflex control of sympathetic nerve activity during mild dynamic leg exercise. Exp Physiol 101:377–386CrossRefPubMedGoogle Scholar
  29. 29.
    Krainik A, Hund-Georgiadis M, Zysset S, von Cramon DY (2005) Regional impairment of cerebrovascular reactivity and BOLD signal in adults after stroke. Stroke 36:1146–1152CrossRefPubMedGoogle Scholar
  30. 30.
    Liu K, Sun G, Li B, Jiang Q, Yang X, Li M, Li L, Qian S, Zhao L, Zhou Z, von Deneen KM, Liu Y (2013) The impact of passive hyperthermia on human attention networks: an fMRI study. Behav Brain Res 243:220–230CrossRefPubMedGoogle Scholar
  31. 31.
    Liu Y, Liu F, Grundke-Iqbal I, Iqbal K, Gong CX (2011) Deficient brain insulin signalling pathway in Alzheimer’s disease and diabetes. J Pathol 225:54–62CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Lo Coco D, Lopez G, Corrao S (2016) Cognitive impairment and stroke in elderly patients. Vasc Health Risk Manag 12:105–116PubMedPubMedCentralGoogle Scholar
  33. 33.
    Marshall RS, Lazar RM, Pile-Spellman J, Young WL, Duong DH, Joshi S, Ostapkovich N (2001) Recovery of brain function during induced cerebral hypoperfusion. Brain 124:1208–1217CrossRefPubMedGoogle Scholar
  34. 34.
    McMorris T, Sproule J, Turner A, Hale BJ (2011) Acute, intermediate intensity exercise, and speed and accuracy in working memory tasks: a meta-analytical comparison of effects. Physiol Behav 102:421–428CrossRefPubMedGoogle Scholar
  35. 35.
    Mentis MJ, Horwitz B, Grady CL, Alexander GE, VanMeter JW, Maisog JM, Pietrini P, Schapiro MB, Rapoport SI (1996) Visual cortical dysfunction in Alzheimer’s disease evaluated with a temporally graded “stress test” during PET. Am J Psychiatry 153:32–40CrossRefPubMedGoogle Scholar
  36. 36.
    Miyazawa T, Horiuchi M, Ichikawa D, Sato K, Tanaka N, Bailey DM, Ogoh S (2012) Kinetics of exercise-induced neural activation; interpretive dilemma of altered cerebral perfusion. Exp Physiol 97:219–227CrossRefPubMedGoogle Scholar
  37. 37.
    Nagata K, Yamazaki T, Takano D, Maeda T, Fujimaki Y, Nakase T, Sato Y (2016) Cerebral circulation in aging. Ageing Res Rev 30:49–60CrossRefPubMedGoogle Scholar
  38. 38.
    Niwa K, Kazama K, Younkin L, Younkin SG, Carlson GA, Iadecola C (2002) Cerebrovascular autoregulation is profoundly impaired in mice overexpressing amyloid precursor protein. Am J Physiol Heart Circ Physiol 283:H315–H323CrossRefPubMedGoogle Scholar
  39. 39.
    Niwa K, Porter VA, Kazama K, Cornfield D, Carlson GA, Iadecola C (2001) A beta-peptides enhance vasoconstriction in cerebral circulation. Am J Physiol Heart Circ Physiol 281:H2417–H2424PubMedGoogle Scholar
  40. 40.
    Niwa K, Younkin L, Ebeling C, Turner SK, Westaway D, Younkin S, Ashe KH, Carlson GA, Iadecola C (2000) Abeta 1-40-related reduction in functional hyperemia in mouse neocortex during somatosensory activation. Proc Natl Acad Sci U S A 97:9735–9740CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Ogoh S (2015) Cerebral blood flow regulation during hypoxia. Exp Physiol 100:109–110CrossRefPubMedGoogle Scholar
  42. 42.
    Ogoh S, Ainslie PN (2009) Cerebral blood flow during exercise: mechanisms of regulation. J Appl Physiol 107:1370–1380 (1985) CrossRefPubMedGoogle Scholar
  43. 43.
    Ogoh S, Ainslie PN (2009) Regulatory mechanisms of cerebral blood flow during exercise: new concepts. Exerc Sport Sci Rev 37:123–129CrossRefPubMedGoogle Scholar
  44. 44.
    Ogoh S, Brothers RM, Barnes Q, Eubank WL, Hawkins MN, Purkayastha S, OY A, Raven PB (2005) The effect of changes in cardiac output on middle cerebral artery mean blood velocity at rest and during exercise. J Physiol 569:697–704CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Ogoh S, Brothers RM, Eubank WL, Raven PB (2008) Autonomic neural control of the cerebral vasculature: acute hypotension. Stroke 39:1979–1987CrossRefPubMedGoogle Scholar
  46. 46.
    Ogoh S, Dalsgaard MK, Yoshiga CC, Dawson EA, Keller DM, Raven PB, Secher NH (2005) Dynamic cerebral autoregulation during exhaustive exercise in humans. Am J Physiol Heart Circ Physiol 288:H1461–H1467CrossRefPubMedGoogle Scholar
  47. 47.
    Ogoh S, Nakahara H, Ueda S, Okazaki K, Shibasaki M, Subudhi AW, Miyamoto T (2014) Effects of acute hypoxia on cerebrovascular responses to carbon dioxide. Exp Physiol 99:849–858CrossRefPubMedGoogle Scholar
  48. 48.
    Ogoh S, Sato K, Okazaki K, Miyamoto T, Hirasawa A, Morimoto K, Shibasaki M (2013) Blood flow distribution during heat stress: cerebral and systemic blood flow. J Cereb Blood Flow Metab 33:1915–1920CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Ogoh S, Sato K, Okazaki K, Miyamoto T, Hirasawa A, Shibasaki M (2014) Hyperthermia modulates regional differences in cerebral blood flow to changes in CO2. J Appl Physiol 117:46–52 (1985) CrossRefPubMedGoogle Scholar
  50. 50.
    Ogoh S, Sorensen H, Hirasawa A, Sasaki H, Washio T, Hashimoto T, Bailey DM, Secher NH (2016) Dynamic cerebral autoregulation is unrelated to decrease in external carotid artery blood flow during acute hypotension in healthy young men. Exp Physiol 101:1040–1049CrossRefPubMedGoogle Scholar
  51. 51.
    Ogoh S, Tsukamoto H, Hirasawa A, Hasegawa H, Hirose N, Hashimoto T (2014) The effect of changes in cerebral blood flow on cognitive function during exercise. Physiol Rep 2(9):e12163CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Ogoh S, Tzeng YC, Lucas SJ, Galvin SD, Ainslie PN (2010) Influence of baroreflex-mediated tachycardia on the regulation of dynamic cerebral perfusion during acute hypotension in humans. J Physiol 588:365–371CrossRefPubMedGoogle Scholar
  53. 53.
    Paterno R, Heistad DD, Faraci FM (2000) Potassium channels modulate cerebral autoregulation during acute hypertension. Am J Physiol Heart Circ Physiol 278:H2003–H2007PubMedGoogle Scholar
  54. 54.
    Pineiro R, Pendlebury S, Johansen-Berg H, Matthews PM (2002) Altered hemodynamic responses in patients after subcortical stroke measured by functional MRI. Stroke 33:103–109CrossRefPubMedGoogle Scholar
  55. 55.
    Pourkhodadad S, Alirezaei M, Moghaddasi M, Ahmadvand H, Karami M, Delfan B, Khanipour Z (2016) Neuroprotective effects of oleuropein against cognitive dysfunction induced by colchicine in hippocampal CA1 area in rats. J Physiol Sci 66:397–405CrossRefPubMedGoogle Scholar
  56. 56.
    Reger MA, Watson GS, Frey WH 2nd, Baker LD, Cholerton B, Keeling ML, Belongia DA, Fishel MA, Plymate SR, Schellenberg GD, Cherrier MM, Craft S (2006) Effects of intranasal insulin on cognition in memory-impaired older adults: modulation by APOE genotype. Neurobiol Aging 27:451–458CrossRefPubMedGoogle Scholar
  57. 57.
    Reger MA, Watson GS, Green PS, Wilkinson CW, Baker LD, Cholerton B, Fishel MA, Plymate SR, Breitner JC, DeGroodt W, Mehta P, Craft S (2008) Intranasal insulin improves cognition and modulates beta-amyloid in early AD. Neurology 70:440–448CrossRefPubMedGoogle Scholar
  58. 58.
    Reis JP, Loria CM, Launer LJ, Sidney S, Liu K, Jacobs DR Jr, Zhu N, Lloyd-Jones DM, He K, Yaffe K (2013) Cardiovascular health through young adulthood and cognitive functioning in midlife. Ann Neurol 73:170–179CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Rosenbloom MH, Barclay TR, Pyle M, Owens BL, Cagan AB, Anderson CP, Frey WH, Hanson LR (2014) A single-dose pilot trial of intranasal rapid-acting insulin in apolipoprotein E4 carriers with mild-moderate Alzheimer’s disease. CNS Drugs 28:1185–1189CrossRefPubMedGoogle Scholar
  60. 60.
    Rother J, Knab R, Hamzei F, Fiehler J, Reichenbach JR, Buchel C, Weiller C (2002) Negative dip in BOLD fMRI is caused by blood flow–oxygen consumption uncoupling in humans. Neuroimage 15:98–102CrossRefPubMedGoogle Scholar
  61. 61.
    Rub U, Del Tredici K, Schultz C, Thal DR, Braak E, Braak H (2001) The autonomic higher order processing nuclei of the lower brain stem are among the early targets of the Alzheimer’s disease-related cytoskeletal pathology. Acta Neuropathol 101:555–564PubMedGoogle Scholar
  62. 62.
    Sahathevan R, Brodtmann A, Donnan GA (2012) Dementia, stroke, and vascular risk factors; a review. Int J Stroke 7:61–73CrossRefPubMedGoogle Scholar
  63. 63.
    Sato K, Ogoh S, Hirasawa A, Oue A, Sadamoto T (2011) The distribution of blood flow in the carotid and vertebral arteries during dynamic exercise in humans. J Physiol 589:2847–2856CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Selkoe DJ, Schenk D (2003) Alzheimer’s disease: molecular understanding predicts amyloid-based therapeutics. Annu Rev Pharmacol Toxicol 43:545–584CrossRefPubMedGoogle Scholar
  65. 65.
    Shah AJ, Su S, Veledar E, Bremner JD, Goldstein FC, Lampert R, Goldberg J, Vaccarino V (2011) Is heart rate variability related to memory performance in middle-aged men? Psychosom Med 73:475–482CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Sharp ES, Gatz M (2011) Relationship between education and dementia: an updated systematic review. Alzheimer Dis Assoc Disord 25:289–304CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Shibasaki M, Namba M, Oshiro M, Crandall CG, Nakata H (2016) The effect of elevations in internal temperature on event-related potentials during a simple cognitive task in humans. Am J Physiol Regul Integr Comp Physiol 311:R33–R38CrossRefPubMedGoogle Scholar
  68. 68.
    Skeberdis VA, Lan J, Zheng X, Zukin RS, Bennett MV (2001) Insulin promotes rapid delivery of N-methyl-d-aspartate receptors to the cell surface by exocytosis. Proc Natl Acad Sci U S A 98:3561–3566CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Sun G, Yang X, Jiang Q, Liu K, Li B, Li L, Zhao L, Li M (2012) Hyperthermia impairs the executive function using the Attention Network Test. Int J Hyperthermia 28:621–626CrossRefPubMedGoogle Scholar
  70. 70.
    Toledo MA, Junqueira LF Jr (2010) Cardiac autonomic modulation and cognitive status in Alzheimer’s disease. Clin Auton Res 20:11–17CrossRefPubMedGoogle Scholar
  71. 71.
    Tsukamoto H, Suga T, Takenaka S, Tanaka D, Takeuchi T, Hamaoka T, Isaka T, Ogoh S, Hashimoto T (2016) Repeated high-intensity interval exercise shortens the positive effect on executive function during post-exercise recovery in healthy young males. Physiol Behav 160:26–34CrossRefPubMedGoogle Scholar
  72. 72.
    Vasudev A, Saxby BK, O’Brien JT, Colloby SJ, Firbank MJ, Brooker H, Wesnes K, Thomas AJ (2012) Relationship between cognition, magnetic resonance white matter hyperintensities, and cardiovascular autonomic changes in late-life depression. Am J Geriatr Psychiatry 20:691–699CrossRefPubMedGoogle Scholar
  73. 73.
    Virues-Ortega J, Buela-Casal G, Garrido E, Alcazar B (2004) Neuropsychological functioning associated with high-altitude exposure. Neuropsychol Rev 14:197–224CrossRefPubMedGoogle Scholar
  74. 74.
    Virues-Ortega J, Garrido E, Javierre C, Kloezeman KC (2006) Human behaviour and development under high-altitude conditions. Dev Sci 9:400–410CrossRefPubMedGoogle Scholar
  75. 75.
    Wallin K, Bostrom G, Kivipelto M, Gustafson Y (2013) Risk factors for incident dementia in the very old. Int Psychogeriatr 25:1135–1143CrossRefPubMedGoogle Scholar
  76. 76.
    Warkentin S, Passant U (1997) Functional imaging of the frontal lobes in organic dementia. Regional cerebral blood flow findings in normals, in patients with frontotemporal dementia and in patients with Alzheimer’s disease, performing a word fluency test. Dement Geriatr Cogn Disord 8:105–109CrossRefPubMedGoogle Scholar
  77. 77.
    Xu W, Qiu C, Gatz M, Pedersen NL, Johansson B, Fratiglioni L (2009) Mid- and late-life diabetes in relation to the risk of dementia: a population-based twin study. Diabetes 58:71–77CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Young SE, Mainous AG 3rd, Carnemolla M (2006) Hyperinsulinemia and cognitive decline in a middle-aged cohort. Diabetes Care 29:2688–2693CrossRefPubMedGoogle Scholar
  79. 79.
    Zhang R, Zuckerman JH, Iwasaki K, Wilson TE, Crandall CG, Levine BD (2002) Autonomic neural control of dynamic cerebral autoregulation in humans. Circulation 106:1814–1820CrossRefPubMedGoogle Scholar
  80. 80.
    Zlokovic BV, Deane R, Sallstrom J, Chow N, Miano JM (2005) Neurovascular pathways and Alzheimer amyloid beta-peptide. Brain Pathol 15:78–83CrossRefPubMedGoogle Scholar

Copyright information

© The Physiological Society of Japan and Springer Japan 2017

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringToyo UniversityKawagoe-ShiJapan

Personalised recommendations