The Journal of Physiological Sciences

, Volume 67, Issue 3, pp 415–423 | Cite as

The effects of two-stage carotid occlusion on spatial memory and pro-inflammatory markers in the hippocampus of rats

  • Mehrnoush Moghaddasi
  • Majid Taati
  • Payman Asadian
  • Ali Reza Khalatbary
  • Raheleh Asaei
  • Naser Pajouhi
Original Paper


The purpose of this study was to evaluate the effects of cerebral hypoperfusion on cognitive ability, TNFα, IL1β and PGE2 levels in both hippocampi in a modified two-vessel occlusion model. Both common carotid arteries of adult male Wistar rats were permanently occluded with an interval of 1 week between occlusions. Learning and memory were significantly decreased after 1 month. This reduction was not significant after 2 months, which may be attributed to blood flow compensation. The TNFα level was significantly increased after 3 h and 1 day. IL1β was significantly increased after 1 day. After a week there was no significant difference in pro-inflammatory levels. Furthermore, there was no difference between right and left hippocampi. It is possible that TNFα and IL1β elevation initiates pathologic processes that contribute to memory impairment.


Cerebral hypoperfusion Inflammation Interleukins Spatial memory Hippocampus 



This study was supported by Lorestan University of Medical Sciences as a Grant (No. 10/89) to Mehrnoush Moghaddasi. The authors are grateful to the directors in Razi Herbal Medicines Research Center for their assistance and collaboration.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Wang J, Zhang HY, Tang XC (2010) Huperzine a improves chronic inflammation and cognitive decline in rats with cerebral hypoperfusion. J Neurosci Res 88(4):807–815PubMedGoogle Scholar
  2. 2.
    de la Torre JC (2002) Vascular basis of Alzheimer’s pathogenesis. Ann N Y Acad Sci 977:196–215CrossRefPubMedGoogle Scholar
  3. 3.
    Farkas E, Luiten PG (2001) Cerebral microvascular pathology in aging and Alzheimer’s disease. Prog Neurobiol 64(6):575–611CrossRefPubMedGoogle Scholar
  4. 4.
    Matsuda H (2001) Cerebral blood flow and metabolic abnormalities in Alzheimer’s disease. Ann Nucl Med 15(2):85–92CrossRefPubMedGoogle Scholar
  5. 5.
    Smith JA, Das A, Ray SK, Banik NL (2012) Role of pro-inflammatory cytokines released from microglia in neurodegenerative diseases. Brain Res Bull 87(1):10–20CrossRefPubMedGoogle Scholar
  6. 6.
    Berti R, Williams AJ, Moffett JR, Hale SL, Velarde LC, Elliott PJ, Yao C, Dave JR, Tortella FC (2002) Quantitative real-time RT-PCR analysis of inflammatory gene expression associated with ischemia–reperfusion brain injury. J Cereb Blood Flow Metab 22(9):1068–1079CrossRefPubMedGoogle Scholar
  7. 7.
    Zhu Y, Saito K, Murakami Y, Asano M, Iwakura Y, Seishima M (2006) Early increase in mRNA levels of pro-inflammatory cytokines and their interactions in the mouse hippocampus after transient global ischemia. Neurosci Lett 393(2–3):122–126CrossRefPubMedGoogle Scholar
  8. 8.
    Weggen S, Rogers M, Eriksen J (2007) NSAIDs: small molecules for prevention of Alzheimer’s disease or precursors for future drug development? Trends Pharmacol Sci 28(10):536–543CrossRefPubMedGoogle Scholar
  9. 9.
    Zaremba J, Losy J (2004) Cytokines in clinical and experimental ischemic stroke. Neurol Neurochir Pol 38(1):S57–S62PubMedGoogle Scholar
  10. 10.
    Wyss-Coray T (2006) Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nat Med 12(9):1005–1015PubMedGoogle Scholar
  11. 11.
    Pickering M, O’Connor JJ (2007) Pro-inflammatory cytokines and their effects in the dentate gyrus. Prog Brain Res 163:339–354CrossRefPubMedGoogle Scholar
  12. 12.
    Cunningham C, Skelly DT (2012) Non-steroidal anti-inflammatory drugs and cognitive function: are prostaglandins at the heart of cognitive impairment in dementia and delirium? J Neuroimmune Pharmacol 7(1):60–73CrossRefPubMedGoogle Scholar
  13. 13.
    Cibelli M, Fidalgo AR, Terrando N, Ma D, Monaco C, Feldmann M, Takata M, Lever IJ, Nanchahal J, Fanselow MS, Maze M (2010) Role of interleukin-1beta in postoperative cognitive dysfunction. Ann Neurol 68:360–368CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Wilson CJ, Finch CE, Cohen HJ (2002) Cytokines and cognition—the case for a head-to-toe inflammatory paradigm. J Am Geriatr Soc 50(12):2041–2056CrossRefPubMedGoogle Scholar
  15. 15.
    Donzis EJ, Tronson NC (2014) Modulation of learning and memory by cytokines: signaling mechanisms and long-term consequences. Neurobiol Learn Mem 115:68–77CrossRefPubMedGoogle Scholar
  16. 16.
    Zhang H, Park Y, Wu J, Xp Chen, Lee S, Yang J, Dellsperger KC, Zhang C (2009) Role of TNF-alpha in vascular dysfunction. Clin Sci (Lond) 116(3):219–230CrossRefGoogle Scholar
  17. 17.
    Feng L, Sun W, Xia Y, Tang WW, Chanmugam P, Soyoola E, Wilson CB, Hwang D (1993) Cloning two isoforms of rat cyclooxygenase: differential regulation of their expression. Arch Biochem Biophys 307:361–368CrossRefPubMedGoogle Scholar
  18. 18.
    Phillis JW, Horrocks LA, Farooqui AA (2006) Cyclooxygenases, lipoxygenases, and epoxygenases in CNS: their role and involvement in neurological disorders. Brain Res Rev 52(2):201–243CrossRefPubMedGoogle Scholar
  19. 19.
    Nogawa S, Zhang F, Ross ME, Iadecola C (1997) Cyclo-oxygenase-2 gene expression in neurons contributes to ischemic brain damage. J Neurosci 17(8):2746–2755PubMedGoogle Scholar
  20. 20.
    Gobbo OL, O’Mara SM (2004) Post-treatment, but not pre-treatment, with the selective cyclooxygenase-2 inhibitor celecoxib markedly enhances functional recovery from kainic acid-induced neurodegeneration. Neuroscience 125(2):317–327CrossRefPubMedGoogle Scholar
  21. 21.
    Drachman DB, Frank K, Dykes-Hoberg M, Teismann P, Almer G, Przedborski S, Rothstein JD (2002) Cyclooxygenase 2 inhibition protects motor neurons and prolongs survival in a transgenic mouse model of ALS. Ann Neurol 52(6):771–778CrossRefPubMedGoogle Scholar
  22. 22.
    Palumbo S, Toscano CD, Parente L, Weigert R, Bosetti F (2012) The cyclooxygenase-2 pathway via the PGE(2) EP2 receptor contributes to oligodendrocytes apoptosis in cuprizone-induced demyelination. J Neurochem 121(3):418–427CrossRefPubMedGoogle Scholar
  23. 23.
    Takadera T, Yumoto H, Tozuka Y, Ohyashiki T (2002) Prostaglandin E2 induces caspase dependent apoptosis in rat cortical cells. Neurosci Lett 317:61–64CrossRefPubMedGoogle Scholar
  24. 24.
    Manabe Y, Anrather J, Kawano T, Niwa K, Zhou P, Ross ME, Iadecola C (2004) Prostanoids, not reactive oxygen species, mediate COX-2-dependent neurotoxicity. Ann Neurol 55(5):668–675CrossRefPubMedGoogle Scholar
  25. 25.
    Hein AM, Stutzman DL, Bland ST, Barrientos RM, Watkins LR, Rudy JW, Maier SF (2007) Prostaglandins are necessary and sufficient to induce contextual fear learning impairments after interleukin-1 beta injections into the dorsal hippocampus. Neuroscience 150:754–763CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Hoozemans JJ, Veerhuis R, Rozemuller AJ, Eikelenboom P (2003) Non-steroidal anti-inflammatory drugs and cyclooxygenase in Alzheimer’s disease. Curr Drug Targets 4(6):461–468CrossRefPubMedGoogle Scholar
  27. 27.
    Yirmiya R, Goshen I (2011) Immune modulation of learning, memory, neural plasticity and neurogenesis. Brain Behav Immun 25:181–213CrossRefPubMedGoogle Scholar
  28. 28.
    Golde TE (2002) Inflammation takes on Alzheimer disease. Nat Med 8(9):936–938CrossRefPubMedGoogle Scholar
  29. 29.
    Wyss-Coray T, Mucke L (2002) Inflammation in neurodegenerative disease—a double edged sword. Neuron 35(3):419–432CrossRefPubMedGoogle Scholar
  30. 30.
    Gasparini L, Ongini E, Wenk G (2004) Non-steroidal anti-inflammatory drugs (NSAIDs) in Alzheimer’s disease: old and new mechanisms of action. J Neurochem 91(3):521–536CrossRefPubMedGoogle Scholar
  31. 31.
    Combrinck M, Williams J, De Berardinis MA, Warden D, Puopolo M, Smith AD, Minghetti L (2006) Levels of CSF prostaglandin E2, cognitive decline, and survival in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 77(1):85–88CrossRefPubMedGoogle Scholar
  32. 32.
    Farkas F, Luiten PGM, Bari F (2007) Permanent, bilateral common carotid artery occlusion in the rat: a model for chronic cerebral hypoperfusion-related neurodegenerative diseases. Brain Res Rev 54(1):162–180CrossRefPubMedGoogle Scholar
  33. 33.
    Cechetti F, Worm PV, Pereira LO, Siqueira IR, A Netto C (2010) The modified 2VO ischemia protocol causes cognitive impairment similar to that induced by the standard method, but with a better survival rate. Braz J Med Biol Res 43(12):1178–1183CrossRefPubMedGoogle Scholar
  34. 34.
    Kaliszewski C, Fernandez LA, Wicke JD (1988) Differences in mortality rate between abrupt and progressive carotid ligation in the gerbil: role of endogenous angiotensin II. J Cereb Blood Flow Metab 8(2):149–154CrossRefPubMedGoogle Scholar
  35. 35.
    Kilkenny C, Brown WJ, Cuthill IC, Emerson M, Altman DG (2010) Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol 8(6):e1000412CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11:47–60CrossRefPubMedGoogle Scholar
  37. 37.
    Bradford MM (1976) Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  38. 38.
    Chard T (1990) An introduction to radioimmunoassay and related techniques, 4th edn. Elsevier, AmsterdamGoogle Scholar
  39. 39.
    Tijssen P (1985) Practice and theory of enzyme immunoassays. Elsevier, AmsterdamGoogle Scholar
  40. 40.
    Zhiyou C, Yong Y, Shanquan S, Jun S, Liangguo H, Ling Y, Jieying L (2009) Upregulation of BACE1 and β-amyloid protein mediated by chronic cerebral hypoperfusion contributes to cognitive impairment and pathogenesis of Alzheimer’s disease. Neurochem Res 34:1226–1235CrossRefPubMedGoogle Scholar
  41. 41.
    De Jong GI, De Vos RA, Steur EN, Luiten PG (1997) Cerebrovascular hypoperfusion: a risk factor for Alzheimer’s disease? Animal model and postmortem human studies. Ann NY Acad Sci 826:56–74CrossRefPubMedGoogle Scholar
  42. 42.
    Liu HX, Zhang JJ, Zheng P, Zhang Y (2005) Altered expression of MAP-2, GAP-43, and synaptophysin in the hippocampus of rats with chronic cerebral hypoperfusion correlates with cognitive impairment. Brain Res Mol Brain Res 139:169–177CrossRefPubMedGoogle Scholar
  43. 43.
    Barros CA, Ekuni R, Moro MA, Pereira FM, Dos Santos Pereira MA, Milani H (2009) The cognitive and histopathological effects of chronic 4-vessel occlusion in rats depend on the set of vessels occluded and the age of the animals. Behav Brain Res 197(2):378–387CrossRefPubMedGoogle Scholar
  44. 44.
    Ohta H, Nishikawa H, Kimura H, Anayama H, Miyamoto M (1997) Chronic cerebral hypoperfusion by permanent internal carotid ligation produces learning impairment without brain damage in rats. Neuroscience 79(4):1039–1050CrossRefPubMedGoogle Scholar
  45. 45.
    Schmidt-Kastner R, Aguirre-Chen C, Saul I, Yick L, Hamasaki D, Busto R, Ginsberg MD (2005) Astrocytes react to oligemia in the forebrain induced by chronic bilateral common carotid artery occlusion in rats. Brain Res 1:28–39CrossRefGoogle Scholar
  46. 46.
    Vicente E, Degerone D, Bohn L, Scornavaca F, Pimentel A, Leite MC, Swarowsky A, Rodrigues L, Nardin P, de Almeida LM, Gottfried C, Souza DO, Netto CA, Gonçalves CA (2009) Astroglial and cognitive effects of chronic cerebral hypoperfusion in the rat. Brain Res 1251:204–212CrossRefPubMedGoogle Scholar
  47. 47.
    Bennett SA, Tenniswood M, Chen JH, Davidson CM, Keyes MT, Fortin T, Pappas BA (1998) Chronic cerebral hypoperfusion elicits neuronal apoptosis and behavioral impairment. Neuroreport 9(1):161–166CrossRefPubMedGoogle Scholar
  48. 48.
    Eklöf B, Siesjö BK (1972) The effect of bilateral carotid artery ligation upon the blood flow and the energy state of the rat brain. Acta Physiol Scand 86(2):155–165CrossRefPubMedGoogle Scholar
  49. 49.
    Otori T, Katsumata T, Muramatsu H, Kashiwagi F, KatayamaY Terashi A (2003) Long-term measurements of cerebral blood flow and metabolism in a rat chronic hypoperfusion model. Clin Exp Pharmacol Physiol 30(4):266–272CrossRefPubMedGoogle Scholar
  50. 50.
    Zhang HY, Zheng CY, Yan H, Wang ZF, Tang LL, Gao X, Tang XC (2008) Potential therapeutic targets of huperzine A for Alzheimer’s disease and vascular dementia. Chem Biol Interact 175(1–3):396–402CrossRefPubMedGoogle Scholar
  51. 51.
    Plaschke K, Grant M, Weigand MA, Zuchner J, Martin E, Bardenheuer HJ (2001) Neuromodulatory effect of propentofylline on rat brain under acute and long-term hypoperfusion. Br J Pharmacol 133(1):107–116CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Muñoz-Fernández MA, Fresno M (1998) The role of tumor necrosis factor, interleukin 6, interferon-γ and inducible nitric oxide synthase in the development and pathology of the nervous system. Prog Neurobiol 56(3):307–340CrossRefPubMedGoogle Scholar
  53. 53.
    Hill JK, Gunion-Rinker L, Kulhanek D, Lessov N, Kim S, Clark WM, Dixon MP, Nishi R, Stenzel-Poore MP, Eckenstein FP (1999) Temporal modulation of cytokine expression following focal cerebral ischemia in mice. Brain Res 820(1–2):45–54CrossRefPubMedGoogle Scholar
  54. 54.
    Gopez JJ, Yue H, Vasudevan R, Malik AS, Fogelsanger LN, Lewis S, Panikashvili D, Shohami E, Jansen SA, Narayan RK, Strauss KI (2005) Cyclooxygenase-2-specific inhibitor improves functional outcomes, provides neuroprotection, and reduces inflammation in a rat model of traumatic brain injury. Neurosurgery 56(3):590–604CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Nakayama M, Uchimura K, Zhu RL, Nagayama T, Rose ME, Stetler RA, Isakson PC, Chen J, Graham SH (1998) Cyclooxygenase-2 inhibition prevents delayed death of CA1 hippocampal neurons following global ischemia. Proc Natl Acad Sci 95(18):10954–10959CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Yang SY, Gao ZX (1999) Determination and clinical significance of plasma levels of prostaglandins in patients with acute brain injury. Surg Neurol 52(3):238–245CrossRefPubMedGoogle Scholar
  57. 57.
    Strauss KI, Barbe MF, Marshall RM, Raghupathi R, Mehta S, Narayan RK (2000) Prolonged cyclooxygenase-2 induction in neurons and glia following traumatic brain injury in the rat. J Neurotrauma 17(8):695–711CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Yamaguchi M, Seki T, Imayoshi I, Tamamaki N, Hayashi Y, Tatebayashi Y, Hitoshi S (2016) Neural stem cells and neuro/gliogenesis in the central nervous system: understanding the structural and functional plasticity of the developing, mature, and diseased brain. J Physiol Sci 66(3):197–206CrossRefPubMedGoogle Scholar
  59. 59.
    Rosenberg PB (2005) Clinical aspects of inflammation in Alzheimer’s disease. Int Rev Psychiatry 17(6):503–514CrossRefPubMedGoogle Scholar
  60. 60.
    Chung WS, Welsh CA, Barres BA, Stevens B (2015) Do glia drive synaptic and cognitive impairment in disease? Nat Neurosci 18(11):1539–1545CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Lana D, Melani A, Pugliese AM, Cipriani S, Nosi D, Pedata F, Giovannini MG (2014) The neuron-astrocyte-microglia triad in a rat model of chronic cerebral hypoperfusion: protective effect of dipyridamole. Front Aging Neurosci 6:322CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Kitamura A, Fujita Y, Oishi N, Kalaria RN, Washida K, Maki T, Okamoto Y, Hase Y, Yamada M, Takahashi J, Ito H, Tomimoto H, Fukuyama H, Takahashi R, Ihara M (2012) Selective white matter abnormalities in a novel rat model of vascular dementia. Neurobiol Aging 33:1012–1035CrossRefPubMedGoogle Scholar

Copyright information

© The Physiological Society of Japan and Springer Japan 2016

Authors and Affiliations

  • Mehrnoush Moghaddasi
    • 1
  • Majid Taati
    • 2
  • Payman Asadian
    • 3
  • Ali Reza Khalatbary
    • 4
  • Raheleh Asaei
    • 1
  • Naser Pajouhi
    • 1
  1. 1.Department of Physiology, Razi Herbal Medicines Research CenterLorestan University of Medical SciencesKhorramabadIran
  2. 2.Department of Pathobiology, Faculty of Veterinary MedicineLorestan UniversityKhorramabadIran
  3. 3.Ontario Veterinary CollegeUniversity of GuelphGuelphCanada
  4. 4.Department of Anatomy, Faculty of MedicineMazandaran University of Medical SciencesSariIran

Personalised recommendations