The Journal of Physiological Sciences

, Volume 67, Issue 3, pp 373–385 | Cite as

The role of apelin in the healing of water-immersion and restraint stress-induced gastric damage

  • İlknur Birsen
  • Burcu Gemici
  • Nuray Acar
  • İsmail Üstünel
  • V. Nimet İzgüt-Uysal
Original Paper

Abstract

The objective of this study was to explore the role of apelin in the healing of gastric lesions induced by stress. Male Wistar rats were exposed to water immersion and restraint stress (WIRS) for 6 h with or without the apelin receptor antagonist F13A. The rats were killed on the 1st, 3rd, 5th or 10th day after the end of stress induction. Apelin and hypoxia-inducible factor-1α expression was increased on the 1st day after the end of stress exposure and was decreased daily thereafter. However, F13A retarded the healing of gastric lesions by preventing the improvement of mucosal blood flow, prostaglandin E2 production and vascular endothelial growth factor expression in rats exposed to WIRS. Additionally, F13A increased the gastric 4-hydroxynonenol + malondialdehyde content on the 1st and 3rd days after the end of stress induction but did not affect the change in gastric mucosal nitric oxide levels. In conclusion, apelin may be a regulatory protein involved in the healing mechanism of stress-induced gastric damage.

Keywords

Apelin F13A Gastric mucosa Lesion Water immersion and restraint stress 

Abbreviations

APJ

G protein-linked orphan receptor

WIRS

Water immersion and restraint stress

F13A

Apelin receptor antagonist

GMBF

Gastric mucosal blood flow

VEGF

Vascular endothelial growth factor

EGF

Epidermal growth factor

PGE2

Prostaglandin E2

NO

Nitric oxide

HIF-1α

Hypoxia-inducible factor

MDA

Malondialdehyde

4-HNE

4-Hydroxynonenal

Notes

Acknowledgments

This work was supported by The Scientific and Technological Research Council of Turkey (TUBITAK) funded by the Turkish Government (Project number: 110S447).

Compliance with ethical standards

Conflict of interest

The authors report no conflicts of interest.

References

  1. 1.
    O’Carroll AM, Lolait SJ, Harris LE, Pope GR (2013) The apelin receptor APJ: journey from an orphan to a multifaceted regulator of homeostasis. J Endocrinol 219(1):R13–R35CrossRefPubMedGoogle Scholar
  2. 2.
    Ladeiras-Lopes R, Ferreira-Martins J, Leite-Moreira AF (2008) The apelinergic system: the role played in human physiology and pathology and potential therapeutic applications. Arq Bras Cardiol 90(5):343–349CrossRefPubMedGoogle Scholar
  3. 3.
    Barnes G, Japp AG, Newby DE (2010) Translational promise of the apelin–APJ system. Heart 96(13):1011–1016CrossRefPubMedGoogle Scholar
  4. 4.
    Wang G, Kundu R, Han S, Qi X, Englander EW, Quertermous T, Greeley GH (2009) Ontogeny of apelin and its receptor in the rodent gastrointestinal tract. Regul Pept 158(1–3):32–39CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Wang G, Anini Y, Wei W, Qi X, O’Carroll AM, Mochizuki T, Wang HQ, Hellmich MR, Englander EW, Greeley Jr GH (2004) Apelin, a new enteric peptide: localization in the gastrointestinal tract, ontogeny, and stimulation of gastric cell proliferation and of cholecystokinin secretion. Endocrinology 145(3):1342–1348CrossRefPubMedGoogle Scholar
  6. 6.
    Ishida J, Hashimoto T, Hashimoto Y, Nishiwaki S, Iguchi T, Harada S, Sugaya T, Matsuzaki H, Yamamoto R, Shiota N, Okunishi H, Kihara M, Umemura S, Sugiyama F, Yagami K, Kasuya Y, Mochizuki N, Fukamizu A (2004) Regulatory roles for APJ, a seven-transmembrane receptor related to angiotensin-type 1 receptor in blood pressure in vivo. J Biol Chem 279(25):26274–26279CrossRefPubMedGoogle Scholar
  7. 7.
    Chu S, Schubert ML (2012) Gastric secretion. Curr Opin Gastroenterol 28(6):587–593CrossRefPubMedGoogle Scholar
  8. 8.
    Lambrecht NW, Yakubov I, Zer C, Sachs G (2006) Transcriptomes of purified gastric ECL and parietal cells: identification of a novel pathway regulating acid secretion. Physiol Genom 25(1):153–165CrossRefGoogle Scholar
  9. 9.
    Lv SY, Yang YJ, Qin YJ, Xiong W, Chen Q (2011) Effect of centrally administered apelin-13 on gastric emptying and gastrointestinal transit in mice. Peptides 32(5):978–982CrossRefPubMedGoogle Scholar
  10. 10.
    Guo S, Gao Q, Jiao Q, Hao W, Gao X, Cao JM (2012) Gastric mucosal damage in water immersion stress: mechanism and prevention with GHRP-6. World J Gastroenterol 18(24):3145–3155CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Lu CL, Li ZP, Zhu JP, Zhao DQ, Ai HB (2011) Studies on functional connections between the supraoptic nucleus and the stomach in rats. J Physiol Sci 61(3):191–199CrossRefPubMedGoogle Scholar
  12. 12.
    Tan R, Bulbul M, Ongut G, Tosun O, Izgut-Uysal VN (2006) Prostaglandins, capsaicin-sensitive sensory nerves and neutrophil infiltration, but not nitric oxide, contribute to cold restraint stress-induced gastric adaptation in rats. Clin Exp Pharmacol Physiol 33(10):946–951CrossRefPubMedGoogle Scholar
  13. 13.
    Malara B, Josko J, Tyrpien M, Malara P, Steplewska K (2005) Dynamics of changes in vascular endothelial growth factor (VEGF) expression and angiogenesis in stress-induced gastric ulceration in rats. J Physiol Pharmacol 56(2):259–271PubMedGoogle Scholar
  14. 14.
    Brzozowska I, Ptak-Belowska A, Pawlik M, Pajdo R, Drozdowicz D, Konturek SJ, Pawlik WW, Brzozowski T (2009) Mucosal strengthening activity of central and peripheral melatonin in the mechanism of gastric defense. J Physiol Pharmacol 60(Suppl 7):47–56PubMedGoogle Scholar
  15. 15.
    Hatazawa R, Tanaka A, Tanigami M, Amagase K, Kato S, Ashida Y, Takeuchi K (2007) Cyclooxygenase-2/prostaglandin E2 accelerates the healing of gastric ulcers via EP4 receptors. Am J Physiol Gastrointest Liver Physiol 293(4):G788–G797CrossRefPubMedGoogle Scholar
  16. 16.
    Tarnawski AS (2005) Cellular and molecular mechanisms of gastrointestinal ulcer healing. Dig Dis Sci 50(Suppl 1):S24–S33CrossRefPubMedGoogle Scholar
  17. 17.
    Izgut-Uysal VN, Gemici B, Birsen I, Acar N, Ustunel I (2014) The protective effect of apelin against water-immersion and restraint stress-induced gastric damage. J Physiol Sci 64(4):279–289CrossRefPubMedGoogle Scholar
  18. 18.
    Warzecha Z, Dembinski A, Ceranowicz P, Dembinski M, Cieszkowski J, Kownacki P, Konturek PC (2011) Role of sensory nerves in gastroprotective effect of anandamide in rats. J Physiol Pharmacol 62(2):207–217PubMedGoogle Scholar
  19. 19.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  20. 20.
    Blackmore MS, Lord CC (2000) The relationship between size and fecundity in Aedes albopictus. J Vector Ecol 25:2212–2217Google Scholar
  21. 21.
    Acar N, Korgun ET, Ustunel I (2012) Cell cycle inhibitor p57 expression in normal and diabetic rat placentas during some stages of pregnancy. Histol Histopathol 27(1):59–68PubMedGoogle Scholar
  22. 22.
    Cho CH, Chen BW, Ho CS, Ko JK, Lam SK (1994) Assessment of hemodynamic changes in rat stomachs by laser Doppler velocimetry and reflectance spectrophotometry. Effects of ethanol and prostaglandin E2 under ischemic and congestive conditions. Digestion 55(6):389–394CrossRefPubMedGoogle Scholar
  23. 23.
    Konturek PC, Brzozowski T, Burnat G, Szlachcic A, Koziel J, Kwiecien S, Konturek SJ, Harsch IA (2010) Gastric ulcer healing and stress-lesion preventive properties of pioglitazone are attenuated in diabetic rats. J Physiol Pharmacol 61(4):429–436PubMedGoogle Scholar
  24. 24.
    Wallace JL (2008) Prostaglandins, NSAIDs, and gastric mucosal protection: why doesn’t the stomach digest itself? Physiol Rev 88(4):1547–1565CrossRefPubMedGoogle Scholar
  25. 25.
    Eyries M, Siegfried G, Ciumas M, Montagne K, Agrapart M, Lebrin F, Soubrier F (2008) Hypoxia-induced apelin expression regulates endothelial cell proliferation and regenerative angiogenesis. Circ Res 103(4):432–440CrossRefPubMedGoogle Scholar
  26. 26.
    Han S, Wang G, Qi X, Lee HM, Englander EW, Greeley Jr GH (2008) A possible role for hypoxia-induced apelin expression in enteric cell proliferation. Am J Physiol Regul Integr Comp Physiol 294(6):R1832–R1839CrossRefPubMedGoogle Scholar
  27. 27.
    Das D, Banerjee RK (1993) Effect of stress on the antioxidant enzymes and gastric ulceration. Mol Cell Biochem 125(2):115–125CrossRefPubMedGoogle Scholar
  28. 28.
    Wang T, Leng YF, Zhang Y, Xue X, Kang YQ, Zhang Y (2011) Oxidative stress and hypoxia-induced factor 1alpha expression in gastric ischemia. World J Gastroenterol 17(14):1915–1922CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Tarnawski AS, Ahluwalia A, Jones MK (2014) Angiogenesis in gastric mucosa: an important component of gastric erosion and ulcer healing and its impairment in aging. J Gastroenterol Hepatol 29(Suppl 4):112–123CrossRefPubMedGoogle Scholar
  30. 30.
    Akiba Y, Nakamura M, Mori M, Suzuki H, Oda M, Kimura H, Miura S, Tsuchiya M, Ishii H (1998) Inhibition of inducible nitric oxide synthase delays gastric ulcer healing in the rat. J Clin Gastroenterol 27(Suppl 1):S64–S73CrossRefPubMedGoogle Scholar
  31. 31.
    Tatemichi M, Ogura T, Sakurazawa N, Nagata H, Sugita M, Esumi H (2003) Roles of inducible nitric oxide synthase in the development and healing of experimentally induced gastric ulcers. Int J Exp Pathol 84(5):213–220CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Langer HF, Chavakis T (2009) Leukocyte-endothelial interactions in inflammation. J Cell Mol Med 13(7):1211–1220CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Kwiecien S, Brzozowski T, Konturek PC, Pawlik MW, Pawlik WW, Kwiecien N, Konturek SJ (2004) Gastroprotection by pentoxyfilline against stress-induced gastric damage. Role of lipid peroxidation, antioxidizing enzymes and proinflammatory cytokines. J Physiol Pharmacol 55(2):337–355PubMedGoogle Scholar
  34. 34.
    Kwiecień S, Pawlik MW, Brzozowski T, Konturek PC, Śliwowski Z, Pawlik WW, Konturek SJ (2008) Nitric oxide (NO)-releasing aspirin and (NO) donors in protection of gastric mucosa against stress. J Physiol Pharmacol 59(Suppl 2):103–115Google Scholar
  35. 35.
    Izgut-Uysal VN, Agac A, Derin N (2001) Effect of carnitine on stress-induced lipid peroxidation in rat gastric mucosa. J Gastroenterol 36(4):231–236CrossRefPubMedGoogle Scholar
  36. 36.
    Izgut-Uysal VN, Bulbul M, Tan R, Derin N, Ustunel I, Agar A, Yargicoglu P (2007) Effect of chronic stress and L-carnitine on rat stomach. J Physiol Sci 57(3):187–192CrossRefPubMedGoogle Scholar
  37. 37.
    Foussal C, Lairez O, Calise D, Pathak A, Guilbeau-Frugier C, Valet P, Parini A, Kunduzova O (2010) Activation of catalase by apelin prevents oxidative stress-linked cardiac hypertrophy. FEBS Lett 584(11):2363–2370CrossRefPubMedGoogle Scholar
  38. 38.
    Than A, Zhang X, Leow MK, Poh CL, Chong SK, Chen P (2014) Apelin attenuates oxidative stress in human adipocytes. J Biol Chem 289(6):3763–3774CrossRefPubMedGoogle Scholar
  39. 39.
    Pisarenko O, Shulzhenko V, Studneva I, Pelogeykina Y, Timoshin A, Anesia R, Valet P, Parini A, Kunduzova O (2015) Structural apelin analogues: mitochondrial ROS inhibition and cardiometabolic protection in myocardial ischaemia reperfusion injury. Br J Pharmacol 172(12):2933–2945CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Physiological Society of Japan and Springer Japan 2016

Authors and Affiliations

  • İlknur Birsen
    • 1
  • Burcu Gemici
    • 1
  • Nuray Acar
    • 2
  • İsmail Üstünel
    • 2
  • V. Nimet İzgüt-Uysal
    • 1
  1. 1.Department of Physiology, Faculty of MedicineAkdeniz UniversityAntalyaTurkey
  2. 2.Department of Histology and Embryology, Faculty of MedicineAkdeniz UniversityAntalyaTurkey

Personalised recommendations