Abstract
Auxetic structures have unique properties wherein the structure collapses inward in the lateral direction when compressed longitudinally and expands in the lateral direction when subjected to longitudinal tensile load. This paper focuses on improving the impact absorption potential of the arrowhead auxetic structure. Topology optimization is performed on this structure to identify areas in the structure where material reduction is possible. The optimized structure inspired the creation of three new variants of the arrowhead structure. These designs are 3D printed using ABS and PLA materials. Compression and impact tests are performed on a drop test rig and a compression test set-up. From the results, an optimal design is obtained that strikes a balance between compressive strength and impact absorption. In addition, a scope for functional structures that are tailor-made for specific applications, based on a trade-off between impact absorptivity and compressive strength, is identified.
This is a preview of subscription content, access via your institution.










References
- 1.
Liu, Y., Hu, H.: A review on auxetic structures and polymeric materials. Sci. Res. Essays 5, 1052–1063 (2010). https://doi.org/10.5897/SRE.9000104
- 2.
Saxena, K.K., Das, R., Calius, E.P.: Three decades of auxetics research—materials with negative Poisson’s ratio: a review. Adv. Eng. Mater. 18, 1847–1870 (2016). https://doi.org/10.1002/adem.201600053
- 3.
Álvarez Elipe, J.C., Díaz Lantada, A.: Comparative study of auxetic geometries by means of computer-aided design and engineering. Smart Mater. Struct. 21, 105004–1–105004–12 (2012). https://doi.org/10.1088/0964-1726/21/10/105004
- 4.
D’Alessandro, L., Zega, V., Ardito, R., Corigliano, A.: 3D auxetic single material periodic structure with ultra-wide tunable bandgap. Sci. Rep. 8, 2262 (2018). https://doi.org/10.1038/s41598-018-19963-1
- 5.
Mukhopadhyay, T., Adhikari, S.: Effective in-plane elastic properties of auxetic honeycombs with spatial irregularity. Mech. Mater. 95, 204–222 (2016). https://doi.org/10.1016/j.mechmat.2016.01.009
- 6.
Imbalzano, G., Tran, P., Ngo, T.D., Lee, P.V.: Three-dimensional modelling of auxetic sandwich panels for localised impact resistance. J. Sandw. Struct. Mater. 19, 291–316 (2017). https://doi.org/10.1177/1099636215618539
- 7.
Wang, Y., Wang, L., Ma, Z., Wang, T.: Finite element analysis of a jounce bumper with negative Poisson’s ratio structure. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 231, 4374–4387 (2017). https://doi.org/10.1177/0954406216665415
- 8.
Imbalzano, G., Linforth, S., Ngo, T.D., Lee, P.V.S., Tran, P.: Blast resistance of auxetic and honeycomb sandwich panels: comparisons and parametric designs. Compos. Struct. 183, 242–261 (2018). https://doi.org/10.1016/j.compstruct.2017.03.018
- 9.
Schultz, J., Griese, D., Ju, J., Shankar, P., Summers, J.D., Thompson, L.: Design of honeycomb mesostructures for crushing energy absorption. J. Mech. Des. 134, 071004 (2012). https://doi.org/10.1115/1.4006739
- 10.
Yang, C., Vora, H.D., Chang, Y.: Behavior of auxetic structures under compression and impact forces. Smart Mater. Struct. 27, 025012 (2018). https://doi.org/10.1088/1361-665X/aaa3cf
- 11.
Hengsbach, S., Díaz Lantada, A.: Direct laser writing of auxetic structures: present capabilities and challenges. Smart Mater. Struct. 23, 1–10 (2014). https://doi.org/10.1088/0964-1726/23/8/087001
- 12.
Yang, L., Harrysson, O., West, H., Cormier, D.: Mechanical properties of 3D re-entrant honeycomb auxetic structures realized via additive manufacturing. Int. J. Solids Struct. 69–70, 475–490 (2015). https://doi.org/10.1016/j.ijsolstr.2015.05.005
- 13.
Yang, Y., Su, X., Wang, D., Chen, Y.: Rapid fabrication of metallic mechanism joints by selective laser melting. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 225, 2249–2256 (2011). https://doi.org/10.1177/0954405411407997
- 14.
Yang, L., Harrysson, O., Cormier, D., West, H., Gong, H., Stucker, B.: Additive manufacturing of metal cellular structures: design and fabrication. JOM 67, 608–615 (2015). https://doi.org/10.1007/s11837-015-1322-y
- 15.
Yilmaz, O., Ugla, A.A.: Shaped metal deposition technique in additive manufacturing: a review. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 230, 1781–1798 (2016). https://doi.org/10.1177/0954405416640181
- 16.
Yang, L., Harrysson, O., West, H., Cormier, D.: Modeling of uniaxial compression in a 3D periodic re-entrant lattice structure. J. Mater. Sci. 48, 1413–1422 (2013). https://doi.org/10.1007/s10853-012-6892-2
- 17.
Niu, J., Choo, H.L., Sun, W., Mok, S.H.: Numerical study on load-bearing capabilities of beam-like lattice structures with three different unit cells. Int. J. Mech. Mater. Des. 14, 443–460 (2018). https://doi.org/10.1007/s10999-017-9384-3
- 18.
Meena, K., Calius, E.P., Singamneni, S.: An enhanced square-grid structure for additive manufacturing and improved auxetic responses. Int. J. Mech. Mater. Des. 15, 413–426 (2019). https://doi.org/10.1007/s10999-018-9423-8
- 19.
Ding, Y., Kovacevic, R.: Feasibility study on 3-D printing of metallic structural materials with robotized laser-based metal additive manufacturing. JOM 68, 1774–1779 (2016). https://doi.org/10.1007/s11837-016-1929-7
- 20.
Yang, Z.Y., Chen, Y.G., Sze, W.S.: Layer-based machining: recent development and support structure design. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 216, 979–991 (2002). https://doi.org/10.1243/09544050260174184
- 21.
Lee, J., Kim, K., Ju, J., Kim, D.-M.: Compliant cellular materials with elliptical holes for extremely high positive and negative Poisson’s ratios. J. Eng. Mater. Technol. 137, 011001 (2015). https://doi.org/10.1115/1.4028317
- 22.
Lim, T.C., Alderson, A., Alderson, K.L.: Experimental studies on the impact properties of auxetic materials. Phys. status solidi. 251, 307–313 (2014). https://doi.org/10.1002/pssb.201384249
- 23.
Qiao, J., Chen, C.Q.: Analyses on the in-plane impact resistance of auxetic double arrowhead honeycombs. J. Appl. Mech. 82, 51007–51009 (2015). https://doi.org/10.1115/1.4030007
- 24.
Qi, C., Remennikov, A., Pei, L., Yang, S., Yu, Z., Ngo, T.D.: Impact and close-in blast response of auxetic honeycomb-cored sandwich panels: experimental tests and numerical simulations. Compos. Struct. 180, 161–178 (2017). https://doi.org/10.1016/j.compstruct.2017.08.020
- 25.
Magalhaes, R., Subramani, P., Lisner, T., Rana, S., Ghiassi, B., Fangueiro, R., Oliveira, D.V., Lourenco, P.B.: Development, characterization and analysis of auxetic structures from braided composites and study the influence of material and structural parameters. Compos. Part A Appl. Sci. Manuf. 87, 86–97 (2016). https://doi.org/10.1016/j.compositesa.2016.04.020
- 26.
Wang, Y., Zhao, W., Zhou, G., Wang, C.: Analysis and parametric optimization of a novel sandwich panel with double-V auxetic structure core under air blast loading. Int. J. Mech. Sci. 142–143, 245–254 (2018). https://doi.org/10.1016/j.ijmecsci.2018.05.001
- 27.
Wu, J., Yuan, C., Che, K., Meaud, J., Jerry Qi, H.: Three-dimensional-printed multistable mechanical metamaterials with a deterministic deformation sequence. J. Appl. Mech. 84, 011004–1–011004–10 (2016). https://doi.org/10.1115/1.4034706
Acknowledgements
The authors acknowledge Shiv Nadar University for providing the infrastructure & funding and Dr. Jagath Kamineni Narayana’s helpful discussions. Dr. Ankit Gupta’s (Assistant Professor, Department of Mechanical Engineering, Shiv Nadar University, India) critical input was invaluable.
Author information
Affiliations
Corresponding author
Ethics declarations
Conflicts of interest
The authors declare that they have no conflict of interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Boopathi, B., Ponniah, G. & Burela, R.G. Realizing the impact and compressive strengths of an arrowhead auxetic structure inspired by topology optimization. Int J Adv Eng Sci Appl Math 12, 211–217 (2020). https://doi.org/10.1007/s12572-021-00286-w
Accepted:
Published:
Issue Date:
Keywords
- Auxetics
- Arrowhead structures
- Impact compliance
- Topology optimization
- Negative Poisson’s ratio
- Additive manufacturing