Realizing the impact and compressive strengths of an arrowhead auxetic structure inspired by topology optimization

Abstract

Auxetic structures have unique properties wherein the structure collapses inward in the lateral direction when compressed longitudinally and expands in the lateral direction when subjected to longitudinal tensile load. This paper focuses on improving the impact absorption potential of the arrowhead auxetic structure. Topology optimization is performed on this structure to identify areas in the structure where material reduction is possible. The optimized structure inspired the creation of three new variants of the arrowhead structure. These designs are 3D printed using ABS and PLA materials. Compression and impact tests are performed on a drop test rig and a compression test set-up. From the results, an optimal design is obtained that strikes a balance between compressive strength and impact absorption. In addition, a scope for functional structures that are tailor-made for specific applications, based on a trade-off between impact absorptivity and compressive strength, is identified.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Liu, Y., Hu, H.: A review on auxetic structures and polymeric materials. Sci. Res. Essays 5, 1052–1063 (2010). https://doi.org/10.5897/SRE.9000104

    Article  Google Scholar 

  2. 2.

    Saxena, K.K., Das, R., Calius, E.P.: Three decades of auxetics research—materials with negative Poisson’s ratio: a review. Adv. Eng. Mater. 18, 1847–1870 (2016). https://doi.org/10.1002/adem.201600053

    Article  Google Scholar 

  3. 3.

    Álvarez Elipe, J.C., Díaz Lantada, A.: Comparative study of auxetic geometries by means of computer-aided design and engineering. Smart Mater. Struct. 21, 105004–1–105004–12 (2012). https://doi.org/10.1088/0964-1726/21/10/105004

    Article  Google Scholar 

  4. 4.

    D’Alessandro, L., Zega, V., Ardito, R., Corigliano, A.: 3D auxetic single material periodic structure with ultra-wide tunable bandgap. Sci. Rep. 8, 2262 (2018). https://doi.org/10.1038/s41598-018-19963-1

    Article  Google Scholar 

  5. 5.

    Mukhopadhyay, T., Adhikari, S.: Effective in-plane elastic properties of auxetic honeycombs with spatial irregularity. Mech. Mater. 95, 204–222 (2016). https://doi.org/10.1016/j.mechmat.2016.01.009

    Article  Google Scholar 

  6. 6.

    Imbalzano, G., Tran, P., Ngo, T.D., Lee, P.V.: Three-dimensional modelling of auxetic sandwich panels for localised impact resistance. J. Sandw. Struct. Mater. 19, 291–316 (2017). https://doi.org/10.1177/1099636215618539

    Article  Google Scholar 

  7. 7.

    Wang, Y., Wang, L., Ma, Z., Wang, T.: Finite element analysis of a jounce bumper with negative Poisson’s ratio structure. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 231, 4374–4387 (2017). https://doi.org/10.1177/0954406216665415

    Article  Google Scholar 

  8. 8.

    Imbalzano, G., Linforth, S., Ngo, T.D., Lee, P.V.S., Tran, P.: Blast resistance of auxetic and honeycomb sandwich panels: comparisons and parametric designs. Compos. Struct. 183, 242–261 (2018). https://doi.org/10.1016/j.compstruct.2017.03.018

    Article  Google Scholar 

  9. 9.

    Schultz, J., Griese, D., Ju, J., Shankar, P., Summers, J.D., Thompson, L.: Design of honeycomb mesostructures for crushing energy absorption. J. Mech. Des. 134, 071004 (2012). https://doi.org/10.1115/1.4006739

    Article  Google Scholar 

  10. 10.

    Yang, C., Vora, H.D., Chang, Y.: Behavior of auxetic structures under compression and impact forces. Smart Mater. Struct. 27, 025012 (2018). https://doi.org/10.1088/1361-665X/aaa3cf

    Article  Google Scholar 

  11. 11.

    Hengsbach, S., Díaz Lantada, A.: Direct laser writing of auxetic structures: present capabilities and challenges. Smart Mater. Struct. 23, 1–10 (2014). https://doi.org/10.1088/0964-1726/23/8/087001

    Article  Google Scholar 

  12. 12.

    Yang, L., Harrysson, O., West, H., Cormier, D.: Mechanical properties of 3D re-entrant honeycomb auxetic structures realized via additive manufacturing. Int. J. Solids Struct. 69–70, 475–490 (2015). https://doi.org/10.1016/j.ijsolstr.2015.05.005

    Article  Google Scholar 

  13. 13.

    Yang, Y., Su, X., Wang, D., Chen, Y.: Rapid fabrication of metallic mechanism joints by selective laser melting. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 225, 2249–2256 (2011). https://doi.org/10.1177/0954405411407997

    Article  Google Scholar 

  14. 14.

    Yang, L., Harrysson, O., Cormier, D., West, H., Gong, H., Stucker, B.: Additive manufacturing of metal cellular structures: design and fabrication. JOM 67, 608–615 (2015). https://doi.org/10.1007/s11837-015-1322-y

    Article  Google Scholar 

  15. 15.

    Yilmaz, O., Ugla, A.A.: Shaped metal deposition technique in additive manufacturing: a review. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 230, 1781–1798 (2016). https://doi.org/10.1177/0954405416640181

    Article  Google Scholar 

  16. 16.

    Yang, L., Harrysson, O., West, H., Cormier, D.: Modeling of uniaxial compression in a 3D periodic re-entrant lattice structure. J. Mater. Sci. 48, 1413–1422 (2013). https://doi.org/10.1007/s10853-012-6892-2

    Article  Google Scholar 

  17. 17.

    Niu, J., Choo, H.L., Sun, W., Mok, S.H.: Numerical study on load-bearing capabilities of beam-like lattice structures with three different unit cells. Int. J. Mech. Mater. Des. 14, 443–460 (2018). https://doi.org/10.1007/s10999-017-9384-3

    Article  Google Scholar 

  18. 18.

    Meena, K., Calius, E.P., Singamneni, S.: An enhanced square-grid structure for additive manufacturing and improved auxetic responses. Int. J. Mech. Mater. Des. 15, 413–426 (2019). https://doi.org/10.1007/s10999-018-9423-8

    Article  Google Scholar 

  19. 19.

    Ding, Y., Kovacevic, R.: Feasibility study on 3-D printing of metallic structural materials with robotized laser-based metal additive manufacturing. JOM 68, 1774–1779 (2016). https://doi.org/10.1007/s11837-016-1929-7

    Article  Google Scholar 

  20. 20.

    Yang, Z.Y., Chen, Y.G., Sze, W.S.: Layer-based machining: recent development and support structure design. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 216, 979–991 (2002). https://doi.org/10.1243/09544050260174184

    Article  Google Scholar 

  21. 21.

    Lee, J., Kim, K., Ju, J., Kim, D.-M.: Compliant cellular materials with elliptical holes for extremely high positive and negative Poisson’s ratios. J. Eng. Mater. Technol. 137, 011001 (2015). https://doi.org/10.1115/1.4028317

    Article  Google Scholar 

  22. 22.

    Lim, T.C., Alderson, A., Alderson, K.L.: Experimental studies on the impact properties of auxetic materials. Phys. status solidi. 251, 307–313 (2014). https://doi.org/10.1002/pssb.201384249

    Article  Google Scholar 

  23. 23.

    Qiao, J., Chen, C.Q.: Analyses on the in-plane impact resistance of auxetic double arrowhead honeycombs. J. Appl. Mech. 82, 51007–51009 (2015). https://doi.org/10.1115/1.4030007

    Article  Google Scholar 

  24. 24.

    Qi, C., Remennikov, A., Pei, L., Yang, S., Yu, Z., Ngo, T.D.: Impact and close-in blast response of auxetic honeycomb-cored sandwich panels: experimental tests and numerical simulations. Compos. Struct. 180, 161–178 (2017). https://doi.org/10.1016/j.compstruct.2017.08.020

    Article  Google Scholar 

  25. 25.

    Magalhaes, R., Subramani, P., Lisner, T., Rana, S., Ghiassi, B., Fangueiro, R., Oliveira, D.V., Lourenco, P.B.: Development, characterization and analysis of auxetic structures from braided composites and study the influence of material and structural parameters. Compos. Part A Appl. Sci. Manuf. 87, 86–97 (2016). https://doi.org/10.1016/j.compositesa.2016.04.020

    Article  Google Scholar 

  26. 26.

    Wang, Y., Zhao, W., Zhou, G., Wang, C.: Analysis and parametric optimization of a novel sandwich panel with double-V auxetic structure core under air blast loading. Int. J. Mech. Sci. 142–143, 245–254 (2018). https://doi.org/10.1016/j.ijmecsci.2018.05.001

    Article  Google Scholar 

  27. 27.

    Wu, J., Yuan, C., Che, K., Meaud, J., Jerry Qi, H.: Three-dimensional-printed multistable mechanical metamaterials with a deterministic deformation sequence. J. Appl. Mech. 84, 011004–1–011004–10 (2016). https://doi.org/10.1115/1.4034706

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Shiv Nadar University for providing the infrastructure & funding and Dr. Jagath Kamineni Narayana’s helpful discussions. Dr. Ankit Gupta’s (Assistant Professor, Department of Mechanical Engineering, Shiv Nadar University, India) critical input was invaluable.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ganeshthangaraj Ponniah.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Boopathi, B., Ponniah, G. & Burela, R.G. Realizing the impact and compressive strengths of an arrowhead auxetic structure inspired by topology optimization. Int J Adv Eng Sci Appl Math 12, 211–217 (2020). https://doi.org/10.1007/s12572-021-00286-w

Download citation

Keywords

  • Auxetics
  • Arrowhead structures
  • Impact compliance
  • Topology optimization
  • Negative Poisson’s ratio
  • Additive manufacturing