Skip to main content
Log in

Fractional lower order covariance-based estimator for bidimensional AR(1) model with stable distribution

  • Published:
International Journal of Advances in Engineering Sciences and Applied Mathematics Aims and scope Submit manuscript

Abstract

Real data modeling often requires the use of non-Gaussian models. A natural extension of the Gaussian distribution is the \(\alpha\)-stable one. The dependence structure description of the \(\alpha\)-stable-based models poses a substantial challenge due to the infinite variance. The classical second moment-based measures cannot be applied in this case. To overcome this issue one can use the alternative dependence measures. The measures of dependence can be applied to estimate the parameters of the model. In this paper, we propose a new estimation method for the parameters of the bidimensional autoregressive model of order 1. The procedure is based on fractional lower order covariance. The use of this method is reasonable from the theoretical point of view. The practical aspect of the method is justified by showing the efficiency of the procedure on the simulated data. Moreover, the new technique is compared with the classical Yule–Walker method based on the covariance function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hong-Zhi, A., Zhao-Guo, C., Hannan, E.J.: A note on ARMA estimation. J. Time Ser. Anal. 4(1), 9–17 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  2. McKenzie, E.: A note on the derivation of theoretical autocovariances for ARMA models. J. Stat. Comput. Simul. 24, 159–162 (1986)

    Article  MATH  Google Scholar 

  3. Chan, H., Chinipardaz, R., Cox, T.: Discrimination of AR, MA and ARMA time series models. Commun. Stat. Theory Methods 25(6), 1247–1260 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brockwell, P.J., Davis, R.A.: Introduction to Time Series and Forecasting. Springer, New York (2002)

    Book  MATH  Google Scholar 

  5. Tsai, H., Chan, K.S.: A note on non-negative ARMA processes. J. Time Ser. Anal. 28, 350–360 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ansley, C.F.: Computation of the theoretical autocovariance function for a vector arma process. J. Stat. Comput. Simul. 12(1), 15–24 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ansley, C.F., Kohn, R.: A note on reparameterizing a vector autoregressive moving average model to enforce stationarity. J. Stat. Comput. Simul. 24(2), 99–106 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  8. Mauricio, J.A.: Exact maximum likelihood estimation of stationary vector ARMA models. J. Am. Stat. Assoc. 90(429), 282–291 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Luetkepohl, H.: Forecasting Cointegrated VARMA Processes, p. 373. Humboldt Universitaet Berlin, Sonderforschungsbereich (2007)

    Google Scholar 

  10. Boubacar Mainassara, Y.: Selection of weak VARMA models by modified Akaike’s information criteria. J. Time Ser. Anal. 33, 121–130 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Niglio, M., Vitale, C.D.: Threshold vector ARMA models. Commun. Stat. Theory Methods 44(14), 2911–2923 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. lee, S., Sa, P.: Testing the variance of symmetric heavy-tailed distributions. J. Stat. Comput. Simul. 56(1), 39–52 (1996)

    Article  MATH  Google Scholar 

  13. Markovich, N.: Nonparametric Analysis of Univariate Heavy Tailed Data. Wiley, chap 3, Heavy-Tailed Density Estimation, pp. 99–121 (2007)

  14. García, V., Gomez-Deniz, E., Vazquez-Polo, F.: A Marshall–Olkin family of heavy-tailed distributions which includes the lognormal one. Commun. Stat. Theory Methods 45, 150527104010005 (2013)

    MathSciNet  MATH  Google Scholar 

  15. Rojo, J.: Heavy-tailed densities. WIREs Comput. Stat. 5(1), 30–40 (2013)

    Article  Google Scholar 

  16. Cao, C., Chen, M., Zhu, X., Jin, S.: Bayesian inference in a heteroscedastic replicated measurement error model using heavy-tailed distributions. J. Stat. Comput. Simul. 87, 1–14 (2017)

    Article  MathSciNet  Google Scholar 

  17. Paolella, M.S. (ed) Fundamental Statistical Inference, Wiley, chap 9, Inference in a Heavy-Tailed Context, pp. 339–399 (2018)

  18. Tomaya, L.C., de Castro, M.: A heteroscedastic measurement error model based on skew and heavy-tailed distributions with known error variances. J. Stat. Comput. Simul. 88(11), 2185–2200 (2018)

    Article  MathSciNet  Google Scholar 

  19. Mittnik, S., Rachev, S.T.: Alternative multivariate stable distributions and their applications to financial modeling. In: Cambanis, S., Samorodnitsky, G., Taqqu, M. (eds.) Stable Processes and Related Topics, Progress in Probabilty, vol. 25. Birkhäuser, Boston (1991)

    Google Scholar 

  20. Kozubowski, T.J., Panorska, A.K., Rachev, S.T.: Statistical issues in modeling multivariate stable portfolios. In: Rachev, S.T. (ed.) Handbook of Heavy Tailed Distributions in Finance, Handbooks in Finance, vol. 1, pp. 131–167. North-Holland, Amsterdam (2003)

    Chapter  Google Scholar 

  21. Stoyanov, S.V., Samorodnitsky, G., Rachev, S., Ortobelli, S.: Computing the portfolio conditional value-at-risk in the alpha-stable case. Probab. Math. Stat. 26, 1–22 (2006)

    MATH  Google Scholar 

  22. Kring, S., Rachev, S.T., Höchstötter, M., Fabozzi, F.J.: Estimation of \(\alpha\)-stable sub-Gaussian distributions for asset returns. In: Bol, G., Rachev, S.T., Würth, R. (eds.) Risk Assessment, pp. 111–152. Physica-Verlag HD, Heidelberg (2009)

    Google Scholar 

  23. Zak, G., Obuchowski, J., Wyłomańska, A., Zimroz, R.: Application of ARMA modelling and alpha-stable distribution for local damage detection in bearings. Diagnostyka 15(3), 3–10 (2014)

    Google Scholar 

  24. Jabłońska-Sabuka, M., Teuerle, M., Wyłomańska, A.: Bivariate sub-Gaussian model for stock index returns. Physica A 486, 628–637 (2017)

    Article  MathSciNet  Google Scholar 

  25. Mikosch, T., Gadrich, T., Kluppelberg, C., Adler, R.J.: Parameter estimation for ARMA models with infinite variance innovations. Ann. Stat. 23(1), 305–326 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  26. Anderson, P.L., Meerschaert, M.M.: Modeling river flows with heavy tails. Water Resour. Res. 34(9), 2271–2280 (1998)

    Article  Google Scholar 

  27. Adler, R.J., Feldman, R.E., Taqqu, M.S. (eds.): A Practical Guide to Heavy Tails: Statistical Techniques and Applications. Birkhäuser, Cambridge (1998)

  28. Thavaneswaran, A., Peiris, S.: Smoothed estimates for models with random coefficients and infinite variance innovations. Math. Comput. Model. 39, 363–372 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Gallagher, C.M.: A method for fitting stable autoregressive models using the autocovariation function. Stat. Probab. Lett. 53(4), 381–390 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mikosch, T., Straumann, D.: Whittle estimation in a heavy-tailed GARCH(1,1) model. Stoch. Process. Appl. 100(1), 187–222 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. Rachev, S. (ed.): Handbook of Heavy Tailed Distributions in Finance. North-Holland, Amsterdam (Netherlands) (2003)

  32. Hill, J.B.: Robust estimation and inference for heavy tailed garch. Bernoulli 21(3), 1629–1669 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zografos, K.: On a measure of dependence based on Fisher’s information matrix. Commun. Stat. Theory Methods 27(7), 1715–1728 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  34. Resnick, S., Den Berg, V.: Sample correlation behavior for the heavy tailed general bilinear process. Commun. Stat. Stoch. Models 16, 233–258 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  35. Gallagher, C.M.: Testing for linear dependence in heavy-tailed data. Commun. Stat. Theory Methods 31(4), 611–623 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  36. Resnick, S.: The extremal dependence measure and asymptotic independence. Stoch. Models 20(2), 205–227 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  37. Rosadi, D.: Order identification for gaussian moving averages using the codifference function. J. Stat. Comput. Simul. 76, 553–559 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  38. Rosadi, D., Deistler, M.: Estimating the codifference function of linear time series models with infinite variance. Metrika 73(3), 395–429 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. Grahovac, D., Jia, M., Leonenko, N., Taufer, E.: Asymptotic properties of the partition function and applications in tail index inference of heavy-tailed data. Statistics 49(6), 1221–1242 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. Rosadi, D.: Measuring dependence of random variables with finite and infinite variance using the codifference and the generalized codifference function. AIP Conf. Proc. 1755(1), 120004 (2016)

    Article  MathSciNet  Google Scholar 

  41. Shijie, W., Hu, Y., He, J., Wang, X.: Randomly weighted sums and their maxima with heavy-tailed increments and dependence structure. Commun. Stat. Theory Methods 46(21), 10851–10863 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  42. Kharisudin, I., Rosadi, D., Abdurakhman, Suhartono S.: The asymptotic property of the sample generalized codifference function of stable MA (1). Far East J. Math. Sci. 99, 1297–1308 (2016)

    MATH  Google Scholar 

  43. Asmussen, S., Thøgersen, J.: Markov dependence in renewal equations and random sums with heavy tails. Stoch. Models 33, 1–16 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  44. Yu, C., Cheng, D.: Randomly weighted sums of linearly wide quadrant-dependent random variables with heavy tails. Commun. Stat. Theory Methods 46(2), 591–601 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  45. Stoica, P.: Generalized Yule–Walker equations and testing the orders of multivariate time series. Int. J. Control 37(5), 1159–1166 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  46. Basu, S., Reinsel, G.C.: A note on properties of spatial Yule–Walker estimators. J. Stat. Comput. Simul. 41(3–4), 243–255 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  47. Choi, B.: On the covariance matrix estimators of the white noise process of a vector autoregressive model. Commun. Stat. Theory Methods 23, 249–256 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  48. Choi, B.: The asymptotic joint distribution of the Yule–Walker estimators of a causal multidimensional AR process. Commun. Stat. Theory Methods 30, 609–614 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  49. Kruczek, P., Wyłomańska, A., Teuerle, M., Gajda, J.: The modified Yule–Walker method for alpha-stable time series models. Phys. A 469, 588–603 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  50. Liu, T.H., Mendel, J.M.: A subspace-based direction finding algorithm using fractional lower order statistics. IEEE Trans. Signal Process. 49(8), 1605–1613 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  51. Chen, Z., Geng, X., Yin, F.: A harmonic suppression method based on fractional lower order statistics for power system. IEEE Trans. Ind. Electron. 63(6), 3745–3755 (2016)

    Article  Google Scholar 

  52. Zak, G., Wyłomańska, A., Zimroz, R.: Periodically impulsive behavior detection in noisy observation based on generalized fractional order dependency map. Appl. Acoust. 144, 31–39 (2019)

    Article  Google Scholar 

  53. Samorodnitsky, G., Taqqu, M.S.: Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance. Chapman & Hall, New York (1994)

    MATH  Google Scholar 

  54. Wyłomańska, A., Chechkin, A., Sokolov, I., Gajda, J.: Codifference as a practical tool to measure interdependence. Physica A 421, 412–429 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  55. Grzesiek, A., Teuerle, M., Wyłomańska, A.: Cross-codifference for bidimensional VAR(1) models with infinite variance 27. (2019) Located at: arXiv:1902.02142

  56. Cambanis, S., Miller, G.: Linear problems in pth order and stable processes. SIAM J. Appl. Math. 41(1), 43–69 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  57. Nowicka, J.: Asymptotic behavior of the covariation and the codifference for ARMA models with stable innovations. Commun. Stat. Stoch. Models 13(4), 673–685 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  58. Nowicka, J., Wyłomańska, A.: The dependence structure for PARMA models with a-stable innovations. Acta Phys. Pol., B 37(11), 3071–3081 (2006)

    Google Scholar 

  59. Nowicka-Zagrajek, J., Wyłomańska, A.: Measures of dependence for stable AR(1) models with time-varying coefficients. Stoch. Models 24(1), 58–70 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  60. Grzesiek, A., Teuerle, M., Sikora, G., Wyłomańska, A.: Spatial-temporal dependence measures for \(\alpha -\)stable bivariate AR(1). In preparation (2019)

  61. Zak, G., Teuerle, M., Wyłomańska, A., Zimroz, R.: Measures of dependence for alpha-stable distributed processes and its application to diagnostics of local damage in presence of impulsive noise. Shock Vib. 2017(6), 1–9 (2017)

    Google Scholar 

  62. Ma, X., Nikias, C.L.: Joint estimation of time delay and frequency delay in impulsive noise using fractional lower order statistics. IEEE Trans. Signal Process. 44(11), 2669–2687 (1996)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Center of Science under Opus Grant No. 2016/21/B/ST1/00929 “Anomalous diffusion processes and their applications in real data modelling”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Wyłomańska.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grzesiek, A., Sundar, S. & Wyłomańska, A. Fractional lower order covariance-based estimator for bidimensional AR(1) model with stable distribution. Int J Adv Eng Sci Appl Math 11, 217–229 (2019). https://doi.org/10.1007/s12572-019-00250-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12572-019-00250-9

Keywords

Navigation