Skip to main content
Log in

A pedestrian review of games on structured populations

Evolutionary games on heterogeneous structures

  • Published:
International Journal of Advances in Engineering Sciences and Applied Mathematics Aims and scope Submit manuscript

Abstract

Understanding the mechanisms of evolution of cooperation and its sustenance has gathered momentum since the last few decades of the twentieth century. However, the complete picture is yet to emerge. Evolutionary game theory aims to model evolutionary dynamics in a population by drawing on the principles of game theory. Spatially restricted interactions, such as in ecological systems, are rather common in nature. When interactions among the individuals in a population are structured, the outcome of the game is significantly different from that of a well-mixed population. In this mini-review, targeted towards a very broad audience of all backgrounds, we summarise some of the critical research by evolutionary biologists, computer scientists, mathematicians and physicists on evolutionary games in structured populations. We also discuss the influence of structure on evolutionary games in diverse scenarios ranging from laboratory environments to multiplex networks. Along the way, we also try to harmonise a few conflicting results in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Clutton-Brock, T.H., O’Riain, M.J., Brotherton, P.N., Gaynor, D., Kansky, R., Griffin, A.S., Manser, M.: Selfish sentinels in cooperative mammals. Science 284, 1640–4 (1999)

    Google Scholar 

  2. Wilkinson, G.S., Shank, C.C.: Rutting-fight mortality among musk oxen on Banks Island, Northwest Territories. Canada. Anim. Behav. 24, 756–758 (1976)

    Google Scholar 

  3. Yurtsev, E.A., Chao, H.X., Datta, M.S., Artemova, T., Gore, J.: Bacterial cheating drives the population dynamics of cooperative antibiotic resistance plasmids. Mol. Syst. Biol 9, 683 (2013)

    Google Scholar 

  4. Backhed, F., Ley, R.E., Sonnenburg, J.L., Peterson, D.A., Gordon, J.I.: Host-bacterial mutualism in the human intestine. Science 307, 1915–1920 (2005)

    Google Scholar 

  5. Fehr, E., Fischbacher, U.: The nature of human altruism. Nature 425, 785 (2003)

    Google Scholar 

  6. Hamilton, W.D.: The genetical evolution of social behaviour. II. J. Theor. Biol. 7, 17–52 (1964)

    Google Scholar 

  7. Nowak, M.A., McAvoy, A., Allen, B., Wilson, E.O.: The general form of Hamiltons rule makes no predictions and cannot be tested empirically. Proc. Natl. Acad. Sci. 114, 5665–5670 (2017)

    Google Scholar 

  8. Birch, J.: The inclusive fitness controversy: finding a way forward. R. Soc. Open Sci 4, 170335 (2017)

    Google Scholar 

  9. Rousset, F.: Regression, least squares, and the general version of inclusive fitness. Evolution 69, 2963–2970 (2015)

    Google Scholar 

  10. Gadagkar, R.: Evolution of eusociality: the advantage of assured fitness returns. Philos. Trans. R. Soc. Lond. B 329, 17–25 (1990)

    Google Scholar 

  11. Smith, J.M., Price, G.R.: The logic of animal conflict. Nature 246, 15 (1973)

    MATH  Google Scholar 

  12. Hamilton, W.D., Hamilton, W.D.: Narrow Roads of Gene Land: Volume 2: Evolution of Sex. Oxford University Press, Oxford (1996)

    Google Scholar 

  13. Trivers, R.L.: The evolution of reciprocal altruism. Q. Rev. Biol. 46, 35–57 (1971)

    Google Scholar 

  14. Fundenberg, D., Maskin, E.: Evolution and cooperation in noisy repeated games. Am. Econ. Rev. 80, 274–279 (1990)

    Google Scholar 

  15. Selten, R., Hammerstein, P.: Gaps in Harley’s argument on evolutionarily stable learning rules and in the logic of tit for tat behavioral and Brain. Science 7, 115–116 (1984)

    Google Scholar 

  16. Rockenbach, B., Milinski, M.: The efficient interaction of indirect reciprocity and costly punishment. Nature 444, 718–723 (2006)

    Google Scholar 

  17. Hauert, C., Traulsen, A., Brandt, H., Nowak, M.A., Sigmund, K.: Via freedom to coercion: the emergence of costly punishment. Science 316, 1905–1907 (2007)

    MathSciNet  MATH  Google Scholar 

  18. Santos, F.C., Pacheco, J.M.: Scale-free networks provide a unifying framework for the emergence of cooperation. Phys. Rev. Lett. 95, 098104 (2005)

    Google Scholar 

  19. Ohtsuki, H., Hauert, C., Lieberman, E., Nowak, M.A.: A simple rule for the evolution of cooperation on graphs and social networks. Nature 441, 502 (2006)

    Google Scholar 

  20. Melbinger, A., Cremer, J., Frey, E.: Evolutionary game theory in growing populations. Phys. Rev. Lett. 105, 178101 (2010)

    Google Scholar 

  21. Wienand, K., Frey, E., Mobilia, M.: Evolution of a fluctuating population in a randomly switching environment. Phys. Rev. Lett. 119, 158301 (2017)

    Google Scholar 

  22. Maciejewski, W., Fu, F., Hauert, C.: Evolutionary game dynamics in populations with heterogenous structures. PLoS Comput. Biol. 10, e1003567 (2014)

    Google Scholar 

  23. Nowak, M.A., Sasaki, A., Taylor, C., Fudenberg, D.: Emergence of cooperation and evolutionary stability in finite populations. Nature 428, 646 (2004)

    Google Scholar 

  24. Traulsen, A., Claussen, J.C., Hauert, C.: Coevolutionary dynamics: from finite to infinite populations. Phys. Rev. Lett. 95, 238701 (2005)

    Google Scholar 

  25. Von Neumann, J., Morgenstern, O.: Theory of games and economic behavior. Bull. Am. Math. Soc. 51, 498–504 (1945)

    MathSciNet  Google Scholar 

  26. Taylor, P.D., Jonker, L.B.: Evolutionary stable strategies and game dynamics. Math. Biosci. 40, 145–156 (1978)

    MathSciNet  MATH  Google Scholar 

  27. Nash, J.F.: Equilibrium points in n-person games. Proc. Natl. Acad. Sci. USA 36, 48–49 (1950)

    MathSciNet  MATH  Google Scholar 

  28. Szabo, G., Hodsagi, K.: The role of mixed strategies in spatial evolutionary games. Physica A, 462 (2016)

    MathSciNet  MATH  Google Scholar 

  29. Szabo, G., Bunth, G.: Social dilemmas in multistrategy evolutionary potential games. Phys. Rev. E 97, 012305 (2018)

    Google Scholar 

  30. Easley, D., Kleinberg, J.: Networks, Crowds, and Markets: Reasoning About a Highly Connected World. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  31. Sanchez, A.: Physics of human cooperation: experimental evidence and theoretical models. J. Stat. Mech. Theory Exp. 2018(2), 024001 (2018). https://doi.org/10.1088/1742-5468/aaa388

    Google Scholar 

  32. Nowak, M.A., May, R.M.: Evolutionary games and spatial chaos. Nature 359, 826 (1992)

    Google Scholar 

  33. Nowak, M.A.: Five rules for the evolution of cooperation. Science 314, 1560–1563 (2006)

    Google Scholar 

  34. Roy, S.: Systems biology beyond degree, hubs and scale-free networks: the case for multiple metrics in complex networks. Syst. Synth. Biol. 6, 31–34 (2012)

    Google Scholar 

  35. Banerjee, S.J., Roy, S.: Key to network controllability. arXiv:1209.3737 (2012)

  36. Grewal, R.K., Mitra, D., Roy, S.: Mapping networks of light-dark transition in LOV photoreceptors. Bioinformatics 31, 3608–3616 (2015)

    Google Scholar 

  37. Banerjee, S.J., Sinha, S., Roy, S.: Slow poisoning and destruction of networks: edge proximity and its implications for biological and infrastructure networks. Phys. Rev. E 91, 022807 (2015)

    Google Scholar 

  38. Banerjee, S.J., Azharuddin, M., Sen, D., Savale, S., Datta, H., Dasgupta, A.K., Roy, S.: Using complex networks towards information retrieval and diagnostics in multidimensional imaging. Sci. Rep. 5, 17271 (2015)

    Google Scholar 

  39. Grewal, R.K., Roy, S.: Modeling proteins as residue interaction networks. Protein Pept. Letts. 22, 923–933 (2015)

    Google Scholar 

  40. Grewal, R.K., Sinha, S., Roy, S.: Topologically inspired walks on randomly connected landscapes with correlated fitness. Front. Phys. 6, 138 (2018)

    Google Scholar 

  41. Dsouza, R.M., Borgs, C., Chayes, J.T., Berger, N., Kleinberg, R.D.: Emergence of tempered preferential attachment from optimization. Proc. Natl. Acad. Sci. USA 104, 6112–6117 (2007)

    Google Scholar 

  42. Barabasi, A.-L.: Albert R: emergence of scaling in random networks. Science 286, 509–512 (1999)

    MathSciNet  MATH  Google Scholar 

  43. Price, D.-D.-S.: A general theory of bibliometric and other cumulative advantage processes. J. Assoc. Inf. Sci. Technol. 27, 292–306 (1976)

    Google Scholar 

  44. Axelrod, R.: The social structure of cooperation. In: The Evolution of Cooperation. Basic Books (1984)

  45. Schelling, T. C.: Sorting and mixing: race and sex. In: Micromotives and Macrobehavior. WW Norton and Company (1978)

  46. Nadell, C.D., Foster, K.R., Xavier, J.B.: Emergence of spatial structure in cell groups and the evolution of cooperation. PLOS Comput. Biol. 6, e1000716 (2010)

    Google Scholar 

  47. Nadell, C.D., Drescher, K., Foster, K.R.: Spatial structure, cooperation and competition in biofilms. Nat. Rev. Microbiol. 14, 589 (2016)

    Google Scholar 

  48. Joshi, J., Couzin, I.D., Levin, S.A., Guttal, V.: Mobility can promote the evolution of cooperation via emergent self-assortment dynamics. PLOS Comput. Biol. 13, e1005732 (2017)

    Google Scholar 

  49. Menon, S.N., Sasidevan, V., Sinha, S.: Emergence of cooperation as a non-equilibrium transition in noisy spatial games. Front. Phys. 6, 34 (2018)

    Google Scholar 

  50. Gomez-Gardenes, J., Campillo, M., Floria, L.M., Moreno, Y.: Dynamical organization of cooperation in complex topologies. Phys. Rev. Lett. 98, 108103 (2007)

    Google Scholar 

  51. Roca, C.P., Cuesta, J.A., Sanchez, A.: Effect of spatial structure on the evolution of cooperation. Phys. Rev. E 80, 046106 (2009)

    Google Scholar 

  52. Hauert, C., Doebeli, M.: Spatial structure often inhibits the evolution of cooperation in the snowdrift game. Nature 428, 643 (2004)

    Google Scholar 

  53. Frey, E.: Evolutionary game theory: theoretical concepts and applications to microbial communities. Physica A 389, 4265–4298 (2010)

    MathSciNet  MATH  Google Scholar 

  54. Lieberman, E., Hauert, C., Nowak, M.A.: Evolutionary dynamics on graphs. Nature 433, 312 (2005)

    Google Scholar 

  55. Imhof, L.A., Nowak, M.A.: Evolutionary game dynamics in a Wright-Fisher process. J. Math. Biol. 52, 667–681 (2006)

    MathSciNet  MATH  Google Scholar 

  56. Doebeli, M., Hauert, C.: Models of cooperation based on the Prisoner’s Dilemma and the Snowdrift game. Ecol. Lett. 8, 748–766 (2005)

    Google Scholar 

  57. Szabo, G., Toke, C.: Evolutionary prisoners dilemma game on a square lattice. Phys. Rev. E 58, 69 (1998)

    Google Scholar 

  58. Chen, Y.S., Lin, H., Wu, C.X.: Evolution of prisoner’s dilemma strategies on scale-free networks. Physica A 385, 379–384 (2007)

    Google Scholar 

  59. Li, M., O’Riordan, C.: The effect of clustering coefficient and node degree on the robustness of cooperation. In: Evolutionary Computation (CEC), 2013 IEEE Congress 2833–2839 (2013)

  60. Santos, F.C., Rodrigues, J.F., Pacheco, J.M.: Graph topology plays a determinant role in the evolution of cooperation. Proc. Roy. Soc. Lond. B 273, 51–55 (2006)

    Google Scholar 

  61. Li, P., Duan, H.: Robustness of cooperation on scale-free networks in the evolutionary prisoner’s dilemma game. Europhys. Lett. 105, 48003 (2014)

    Google Scholar 

  62. Ichinose, G., Tenguishi, Y., Tanizawa, T.: Robustness of cooperation on scale-free networks under continuous topological change. Phys. Rev. E 88, 052808 (2013)

    Google Scholar 

  63. Gallos, L.K., Cohen, R., Argyrakis, P., Bunde, A., Havlin, S.: Stability and topology of scale-free networks under attack and defense strategies. Phys. Rev. Lett. 94(18), 188701 (2005)

    Google Scholar 

  64. Duran, O., Mulet, R.: Evolutionary prisoner’s dilemma in random graphs. Physica D 208, 257–265 (2005)

    MathSciNet  MATH  Google Scholar 

  65. Masuda, N.: Participation costs dismiss the advantage of heterogeneous networks in evolution of cooperation. Proc. Roy. Soc. Lond. B 274, 1815–1821 (2007)

    Google Scholar 

  66. Szolnoki, A., Perc, M.: Coevolution of teaching activity promotes cooperation. New J. Phys. 10, 043036 (2008)

    Google Scholar 

  67. Perc, M., Szolnoki, A., Szabo, G.: Restricted connections among distinguished players support cooperation. Phys. Rev. E 78, 066101 (2008)

    Google Scholar 

  68. Eguiluz, V.M., Zimmermann, M.G., Cela-Conde, C.J., Miguel, M.S.: Cooperation and the emergence of role differentiation in the dynamics of social networks. Am. J. Sociol. 110, 977–1008 (2005)

    Google Scholar 

  69. Fu, F., Hauert, C., Nowak, M.A., Wang, L.: Reputation-based partner choice promotes cooperation in social networks. Phys. Rev. E 78, 026117 (2008)

    Google Scholar 

  70. Chen, X., Fu, F., Wang, L.: Interaction stochasticity supports cooperation in spatial prisoners dilemma. Phys. Rev. E 78, 051120 (2008)

    Google Scholar 

  71. Pestelacci, E., Tomassini, M., Luthi, L.: Evolution of cooperation and coordination in a dynamically networked society. Biol. Theory 3, 139–153 (2008)

    Google Scholar 

  72. Antonioni, A., Tomassini, M.: Network fluctuations hinder cooperation in evolutionary games. PLoS One 6, e25555 (2011)

    Google Scholar 

  73. Szolnoki, A., Szabo, G.: Cooperation enhanced by inhomogeneous activity of teaching for evolutionary Prisoner’s Dilemma games. Europhys. Lett. 77, 30004 (2007)

    MathSciNet  Google Scholar 

  74. Szolnoki, A., Perc, M.: Promoting cooperation in social dilemmas via simple coevolutionary rules. Eur. Phys. J. B 67, 337–344 (2009)

    MATH  Google Scholar 

  75. McNamara, J.M., Barta, Z., Fromhage, L., Houston, A.I.: The coevolution of choosiness and cooperation. Nature 451(7175), 189 (2008)

    Google Scholar 

  76. Szolnoki, A., Perc, M., Szabo, G., Stark, H.U.: Impact of aging on the evolution of cooperation in the spatial prisoner’s dilemma game. Phys. Rev. E 80, 021901 (2009)

    Google Scholar 

  77. Poncela, J., Gomez-Gardenes, J., Traulsen, A., Moreno, Y.: Evolutionary game dynamics in a growing structured population. New J. Phys. 11, 083031 (2009)

    Google Scholar 

  78. O’Toole, G., Kaplan, H.B., Kolter, R.: Biofilm formation as microbial development. Annu. Rev. Microbiol. 54, 49–79 (2000)

    Google Scholar 

  79. Watnick, P., Kolter, R.: Biofilm, city of microbes. J. Bacteriol. 182, 2675–2679 (2000)

    Google Scholar 

  80. Okabe, S., Hiratia, K., Ozawa, Y., Watanabe, Y.: Spatial microbial distributions of nitrifiers and heterotrophs in mixed-population biofilms. Biotechnol. Bioeng. 50, 24–35 (1996)

    Google Scholar 

  81. Xavier, J.B., Foster, K.R.: Cooperation and conflict in microbial biofilms. Proc. Natl. Acad. Sci. USA 104, 876–881 (2007)

    Google Scholar 

  82. Czaran, T.L., Hoekstra, R.F., Pagie, L.: Chemical warfare between microbes promotes biodiversity. Proc. Natl. Acad. Sci. USA 99, 786–790 (2002)

    Google Scholar 

  83. Pagie, L., Hogeweg, P.: Colicin diversity: a result of eco-evolutionary dynamics. J. Theor. Biol. 196, 251–261 (1999)

    Google Scholar 

  84. Kerr, B., Riley, M.A., Feldman, M.W., Bohannan, B.J.: Local dispersal promotes biodiversity in a real-life game of rock paper scissors. Nature 418, 171 (2002)

    Google Scholar 

  85. Kirkup, B.C., Riley, M.A.: Antibiotic-mediated antagonism leads to a bacterial game of rock paper scissors in vivo. Nature 428, 412 (2004)

    Google Scholar 

  86. Sinha, S., Grewal, R.K., Roy, S.: Modeling bacteria-phage interactions and implications for phage therapy. Adv. App. Microbiol. 103, 103–141 (2018)

    Google Scholar 

  87. Samaddar, S., Grewal, R.K., Sinha, S., Ghosh, S., Roy, S., Das Gupta, S.K.: Dynamics of Mycobacteriophage–Mycobacterial host interaction: evidence for secondary mechanisms for host lethality. Appl. Environ. Microbiol. 82, 124–133 (2016)

    Google Scholar 

  88. Turner, P.E., Chao, L.: Prisoner’s dilemma in an RNA virus. Nature 398, 441 (1999)

    Google Scholar 

  89. Nowak, M.A., Sigmund, K.: Phage-lift for game theory. Nature 398, 367 (1999)

    Google Scholar 

  90. May, R.M., Leonard, W.J.: Nonlinear aspects of competition between three species. SIAM J. Appl. Math. 29, 243–253 (1975)

    MathSciNet  MATH  Google Scholar 

  91. Szabo, G.: Competing associations in six-species predator prey models. J. Phys. A 38, 6689 (2005)

    MathSciNet  MATH  Google Scholar 

  92. Harper, J.L., Hawksworth, D.L.: Biodiversity: measurement and estimation. Philos. Trans. R. Soc. Lond. B 345, 5–12 (1994)

    Google Scholar 

  93. Claussen, J.C., Traulsen, A.: Cyclic dominance and biodiversity in well-mixed populations. Phys. Rev. Lett. 100, 058104 (2008)

    Google Scholar 

  94. Smith, J.M.: Evolution-the games lizards play. Nature 380, 198–199 (1996)

    Google Scholar 

  95. Sinervo, B., Miles, D.B., Frankino, W.A., Klukowski, M., DeNardo, D.F.: Testosterone, endurance, and Darwinian fitness: natural and sexual selection on the physiological bases of alternative male behaviors in side-blotched lizards. Horm. Behav. 38, 222–233 (2000)

    Google Scholar 

  96. Corl, A., Davis, A.R., Kuchta, S.R., Sinervo, B.: Selective loss of polymorphic mating types is associated with rapid phenotypic evolution during morphic speciation. Proc. Natl. Acad. Sci. USA 107, 4254–4259 (2010)

    Google Scholar 

  97. Lotka, A.J.: Analytical note on certain rhythmic relations in organic systems. Proc. Natl. Acad. Sci. USA 6, 410–415 (1920)

    Google Scholar 

  98. Volterra, V.: Fluctuations in the abundance of a species considered mathematically. Nature 118, 558–560 (1926)

    MATH  Google Scholar 

  99. Volterra, V.: Variations and fluctuations of the number of individuals in animal species living together. ICES J. Mar. Sci 3, 3–51 (1928)

    Google Scholar 

  100. Reichenbach, T., Mobilia, M., Frey, E.: Mobility promotes and jeopardizes biodiversity in rock-paper-scissors games. Nature 448, 1046 (2007)

    Google Scholar 

  101. Szolnoki, A., Mobilia, M., Jiang, L.-L., Szczesny, B., Rucklidge, A.M., Perc, M.: Cyclic dominance in evolutionary games: a review. J. R. Soc. Interface. 11, 20140735 (2014)

    Google Scholar 

  102. Wang, Z., Wang, L., Szolnoki, A., Perc, M.: Evolutionary games on multilayer networks: a colloquium. Eur. Phys. J. B 88, 124 (2015)

    Google Scholar 

  103. Cassar, A.: Coordination and cooperation in local, random and small world networks: experimental evidence. Games Econ. Behav. 58, 209–230 (2007)

    MathSciNet  MATH  Google Scholar 

  104. Gracia-Lazaro, C., Ferrer, A., Ruiz, G., Tarancon, A., Cuesta, J.A., Sanchez, A., Moreno, Y.: Heterogeneous networks do not promote cooperation when humans play a Prisoner’s Dilemma. Proc. Natl. Acad. Sci. U.S.A. 109, 12922–12926 (2012)

    Google Scholar 

  105. Grujic, J., Fosco, C., Araujo, L., Cuesta, J.A., Sanchez, A.: Social experiments in the mesoscale: Humans playing a spatial prisoner’s dilemma. PloS One 5, e13749 (2010)

    Google Scholar 

  106. Requejo, R.J., Camacho, J.: Evolution of cooperation mediated by limiting resources: connecting resource based models and evolutionary game theory. J. Theor. Biol. 272, 35–41 (2011)

    MathSciNet  MATH  Google Scholar 

  107. Gould, N.E.S.J.: Punctuated equilibria: an alternative to phyletic gradualism. In: Ayala, F.J., Avise, J.C. (eds.) Essential Readings in Evolutionary Biology. JHU Press, Baltimore (1972)

    Google Scholar 

  108. Tembine, H., Altman, E., ElAzouzi, R., Sandholm, W.H.: Evolutionary game dynamics with migration for hybrid power control in wireless communications. In: 47th IEEE Conference on Decision and Control (2008)

  109. Chastain, E., Livnat, A., Papadimitriou, C., Vazirani, U.: Algorithms, games, and evolution. Proc. Natl. Acad. Sci. of U.S.A. 111, 10620–10623 (2014)

    MathSciNet  MATH  Google Scholar 

  110. Szabo, G., Fath, G.: Evolutionary games on graphs. Phys. Rep. 446, 97–216 (2007)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumen Roy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinha, S., Ghosh, S. & Roy, S. A pedestrian review of games on structured populations. Int J Adv Eng Sci Appl Math 11, 138–152 (2019). https://doi.org/10.1007/s12572-018-0241-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12572-018-0241-x

Keywords

Navigation