Skip to main content
Log in

Abstract

In this paper, we study the capability of implicit large eddy simulation (ILES) to capture transition. In particular, we study a planar temporal mixing layer subjected to low free stream perturbations. We simulated this problem by ILES and other approaches like Reynolds averaged Navier Stokes simulation (RANS), conventional large eddy simulation (LES) and direct numerical simulation (DNS). Qualitative and quantitative assessment of their relative performance reveals the advantage of ILES over other methods. We propose that any scheme, upwinding in this case, will be successful in simulating such flows if the discrete dispersion relationship of the linearized equation is similar to the theoretical dispersion relation. To verify our conjecture, we derived discretized dispersion relationship with upwinding and central difference scheme for a simple prototype of Navier Stokes equation namely complex Ginzburg Landau equation (CGLE). We found that the two relations and thus perturbation growth are significantly different from each other for, at least, convection dominated flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kleiser, L., Zang, T.A.: Numerical simulation of transition in wall-bounded shear flows. Ann. Rev. Fluid Mech. 23(1), 495–537 (1991)

    Article  Google Scholar 

  2. Saric, W.S., Reed, H.L., White, E.B.: Stability and transition of three-dimensional boundary layers. Annu. Rev. Fluid Mech. 35(1), 413–440 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Gortler, H.: Instabilitat laminarer Grenzschichten an konkaven Wanden gegenuber gewissen dreidimensionalen Storungen. ZAMM J. Appl. Math. Mech. 21(4), 250–252 (1941)

    Article  MATH  Google Scholar 

  4. Schrader, L.U., Brandt, L., Zaki, T.A.: Receptivity, instability and breakdown of Grtler flow. J. Fluid Mech. 682, 362–396 (2011)

    Article  MATH  Google Scholar 

  5. Nagarajan, S., Lele, S.K., Ferziger, J.H.: Leading-edge effects in bypass transition. J. Fluid Mech. 572, 471–504 (2007)

    Article  MATH  Google Scholar 

  6. Ovchinnikov, V., Choudhari, M.M., Piomelli, U.: Numerical simulations of boundary-layer bypass transition due to high-amplitude free-stream turbulence. J. Fluid Mech. 613, 135169 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Liu, Y., Zaki, T.A., Durbin, P.A.: Boundary-layer transition by interaction of discrete and continuous modes. J. Fluid Mech. 604, 199 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Liu, Y., Zaki, T.A., Durbin, P.A.: Floquet analysis of secondary instability of boundary layers distorted by Klebanoff streaks and Tollmien Schlichting waves. Phys. Fluids 20(12), 124102 (2008)

    Article  MATH  Google Scholar 

  9. Piomelli, U., Zang, T.A., Speziale, C.G., Hussaini, M.Y.: On the largeeddy simulation of transitional wallbounded ows. Phys. Fluids A 2(2), 257–265 (1990)

    Article  Google Scholar 

  10. Ducros, F., Comte, P., Lesieur, M.: Large-eddy simulation of transition to turbulence in a boundary layer developing spatially over a flat plate. J. Fluid Mech. 326, 1–36 (1996)

    Article  MATH  Google Scholar 

  11. Wilcox, D.C.: Alternative to the e9 procedure for predicting boundary-layer transition. AIAA J. 19(1), 56–64 (1981)

    Article  Google Scholar 

  12. Jones, W.P., Launder, B.: The calculation of low-Reynolds-number phenomena with a two-equation model of turbulence. Int. J. Heat Mass Transf. 16(6), 1119–1130 (1973)

    Article  Google Scholar 

  13. Abu-Ghannam, B.J., Shaw, R.: Natural transition of boundary layers the effects of turbulence, pressure gradient, and flow history. J. Mech. Eng. Sci. 22(5), 213–228 (1980)

    Article  Google Scholar 

  14. Vincent, P.E., Farrington, A.M., Witherden, F.D., Jameson, A.: An extended range of stable-symmetric-conservative flux reconstruction correction functions. Comput. Methods Appl. Mech. Eng. 296, 248–272 (2015)

    Article  MathSciNet  Google Scholar 

  15. Vermeire, B.C., Vincent, P.E.: On the properties of energy stable flux reconstruction schemes for implicit large eddy simulation. J. Comput. Phys. 327, 368–388 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Vermeire, B.C., Vincent, P.E.: On the behaviour of fully-discrete flux reconstruction schemes. Comput. Methods Appl. Mech. Eng. 315, 1053–1079 (2017)

    Article  MathSciNet  Google Scholar 

  17. Margolin, L.G., Rider, W.J.: A rationale for implicit turbulence modelling. Int. J. Numer. Methods Fluids 39(9), 821–841 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Margolin, L.G., Rider, W.J.: The design and construction of implicit LES models. Int. J. Numer. Methods Fluids 47(1011), 1173–1179 (2005)

    Article  MATH  Google Scholar 

  19. Margolin, L.G., Rider, W.J., Grinstein, F.F.: Modeling turbulent flow with implicit LES. J. Turbul. 7, N15 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. John, V.: An assessment of two models for the subgrid scale tensor in the rational LES model. J. Comput. Appl. Math. 173(1), 57–80 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chorin, A.J.: The numerical solution of the Navier–Stokes equations for an incompressible fluid. Bull. Am. Math. Soc. 73(6), 928–931 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  22. Laizet, S., Lamballais, E.: High-order compact schemes for incompressible flows: a simple and efficient method with quasi-spectral accuracy. J. Comput. Phys. 228(16), 5989–6015 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sengupta, T.K., Nair, M.T.: Upwind schemes and large eddy simulation. Int. J. Numer. Methods Fluids 31(5), 879–889 (1999)

    Article  MATH  Google Scholar 

  24. Lele, S.K.: Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103(1), 16–42 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  25. Charru, F.: Hydrodynamic Instabilities, Chap. 3. Cambridge Texts in Applied Mathematics, 1st edn, pp. 98–100. Cambridge University Press, New York (2011)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikas Dwivedi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dwivedi, V., Srinivasan, B. Prediction of transition in temporal mixing layer using ILES. Int J Adv Eng Sci Appl Math 10, 116–124 (2018). https://doi.org/10.1007/s12572-018-0218-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12572-018-0218-9

Keywords

Navigation