Skip to main content
Log in

Abstract

Reversible part of evolution equations of physical systems is often generated by a Poisson bracket. We discuss geometric means of construction of Poisson brackets and their mutual coupling (direct, semidirect and matched pair products) as well as projections of Poisson brackets to less detailed Poisson brackets. This way the Hamiltonian coupling of transport of mixtures with electrodynamics is elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Using that \(F_u\) is a vector field, that acts on scalars as \(F_{u_i}\partial _i H_\rho \).

  2. Hand-written notes are available upon personal request to the corresponding author. The calculation were checked using the automated Poisson bracket manipulation program [60].

References

  1. Abraham, R., Marsden, J.E.: Foundations of Mechanics. AMS Chelsea Publishing/American Mathematical Society, Providence (1978)

    MATH  Google Scholar 

  2. Arnold, V.I.: Mathematical Methods of Classical Mechanics. Springer, New York (1989)

    Book  Google Scholar 

  3. Libermann, P., Marle, C.-M.: Symplectic Geometry and Analytical Mechanics, vol. 35. Springer, Berlin (2012)

    MATH  Google Scholar 

  4. Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry, Volume Second Edition of Texts in Applied Mathematics 17. Springer, New York (1999)

    Google Scholar 

  5. Dirac, P.A.M.: Lectures in quantum mechanics. Yeshiva University, New York (1964)

    MATH  Google Scholar 

  6. Tulczyjew, W.M.: The legendre transformation. Ann. l. Phys. Théor 27(1), 101–114 (1977)

    MathSciNet  MATH  Google Scholar 

  7. Agrachev, A.A., Sachkov, Y.: Control Theory from the Geometric Viewpoint. Springer, Berlin (2013)

    MATH  Google Scholar 

  8. Bloch, A.M., Krishnaprasad, P.S., Marsden, J.E., Murray, R.M.: Nonholonomic mechanical systems with symmetry. Arch. Ration. Mech. Anal. 136(1), 21–99 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bullo, F., Lewis, A.D.: Geometric Control of Mechanical Systems, Volume 49 of Texts in Applied Mathematics. Springer, New York (2004)

    Google Scholar 

  10. Jurdjevic, V.: Geometric Control Theory. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  11. Bruveris, M., Gay-Balmaz, F., Holm, D.D., Ratiu, T.S.: The momentum map representation of images. J. Nonlinear Sci. 21(1), 115–150 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bruveris, M., Holm, D.D.: Geometry of image registration: the diffeomorphism group and momentum maps. In: Geometry, Mechanics, and Dynamics, pp. 19–56. Springer (2015)

  13. Ellis, D.C.P., Gay-Balmaz, F., Holm, D.D., Putkaradze, V., Ratiu, T.S.: Symmetry reduced dynamics of charged molecular strands. Arch. Ration. Mech. Anal. 197(3), 811–902 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Grmela, M., Jou, D., Casas-Vazquez, J., Bousmina, M., Lebon, G.: Ensemble averaging in turbulence modelling. Phys. Lett. A 330(1–2), 54–64 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hütter, M., Svendsen, B.: Thermodynamic model formulation for viscoplastic solids as general equations for non-equilibrium reversible-irreversible coupling. Contin. Mech. Thermodyn. 24, 211–227 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Grmela, M., Öttinger, H.C.: Dynamics and thermodynamics of complex fluids. I. Development of a general formalism. Phys. Rev. E 56, 6620–6632 (1997)

    Article  MathSciNet  Google Scholar 

  17. Öttinger, H.C., Grmela, M.: Dynamics and thermodynamics of complex fluids. II. Illustrations of a general formalism. Phys. Rev. E 56, 6633–6655 (1997)

    Article  MathSciNet  Google Scholar 

  18. Pavelka, M., Klika, V., Grmela, M.: Time reversal in nonequilibrium thermodynamics. Phys. Rev. E 90, 062131 (2014)

    Article  Google Scholar 

  19. Marsden, J.E., Ratiu, T.S., Weinstein, A.: Reduction and Hamiltonian structures on duals of semidirect product lie algebras. Cont. Math. AMS 28, 55–100 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  20. Öttinger, H.C.: Beyond Equilibrium Thermodynamics. Wiley, Hoboken (2005)

    Book  Google Scholar 

  21. Arnold, V.I.: Sur la géometrie différentielle des groupes de lie de dimension infini et ses applications dans l’hydrodynamique des fluides parfaits. Ann. I. Fourier 16(1), 319–361 (1966)

    Article  Google Scholar 

  22. Smale, S.: Topology and mechanics. I. Invent. Math. 10(4), 305–331 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  23. Marsden, J., Weinstein, A.: Reduction of symplectic manifolds with symmetry. Rep. Math. Phys. 5(1), 121–130 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  24. Meyer, K.R.: Symmetries and integrals in mechanics. In: Peixoto, M.M. (ed.) Dynamical systems. Academic Press, USA (1973)

    Google Scholar 

  25. Marsden, J.E., Misiolek, G., Ortega, J.-P., Perlmutter, M., Ratiu, T.S.: Hamiltonian reduction by stages. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  26. Esen, O., Sütlü, S.: Lagrangian dynamics on matched pairs. ArXiv preprint arXiv:1512.06770 (2015) (recent paper from the Journal of Geometry and Physics)

  27. Esen, O., Sütlü, S.: Hamiltonian dynamics on matched pairs. ArXiv preprint arXiv:1604.05130 (2016) (recent paper from the Journal of Geometry and Physics)

  28. Pavelka, M., Klika, V., Esen, O., Grmela, M.: A hierarchy of poisson brackets in non-equilibrium thermodynamics. Physica D: Nonlinear phenom. 335, 54–69 (2016)

    Article  MathSciNet  Google Scholar 

  29. Fecko, M.: Differential Geometry and Lie Groups for Physicists. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  30. Nakahara, M.: Geometry, Topology and Physics. CRC Press, Boca Raton (2003)

    MATH  Google Scholar 

  31. Spivak, M.: Comprehensive introduction to differential geometry. Publish or Perish, Inc, Houston, TX (1975)

    MATH  Google Scholar 

  32. Abraham, R., Marsden, J.E., Ratiu, T.: Manifolds, Tensor Analysis, and Applications. Springer, Berlin (2012)

    MATH  Google Scholar 

  33. Cartan, H.: Differential Forms. Courier Corporation, North Chelmsford (2012)

    MATH  Google Scholar 

  34. Suhubi, E.: Exterior Analysis: Using Applications of Differential Forms. Elsevier, Amsterdam (2013)

    MATH  Google Scholar 

  35. Vaisman, I.: Lectures on the Geometry of Poisson Manifolds, vol. 118. Birkhäuser, Basel (2012)

    MATH  Google Scholar 

  36. Weinstein, A.: The local structure of poisson manifolds. J. Differ. Geom. 18(3), 523–557 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  37. Van der Schaft, A.J.: Port-Hamiltonian Systems: Network Modeling and Control of Nonlinear Physical Systems. Springer, Berlin (2004)

    Google Scholar 

  38. Marsden, J.E., Weinstein, A.: The Hamiltonian structure of the Maxwell-Vlasov equations. Phys. D 4(3), 394–406 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  39. Olver, P.J.: Applications of Lie Groups to Differential Equations, vol. 107. Springer, Berlin (2000)

    MATH  Google Scholar 

  40. Arnold, V.I., Khesin, B.A.: Topological Methods in Hydrodynamics, vol. 125. Springer, Berlin (1999)

    MATH  Google Scholar 

  41. Kolár, I., Michor, P.W., Slov’ak, J.: Natural Operations in Differential Geometry. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  42. Gay-Balmaz, F., Vizman, C.: Dual pairs in fluid dynamics. Ann. Glob. Anal. Geom. 41(1), 1–24 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  43. Esen, O., Gümral, H.: Geometry of plasma dynamics ii: Lie algebra of Hamiltonian vector fields. J. Geom. Mech. 4(3), 239–269 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  44. Gümral, H.: Geometry of plasma dynamics. I. Group of canonical diffeomorphisms. J. Math. Phys. 51(8), 083501 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  45. Lu, J.-H., Weinstein, A.: Poisson Lie groups, dressing transformations, and Bruhat decompositions. J. Differ. Geom. 31(2), 501–526 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  46. Majid, S.: Matched pairs of Lie groups associated to solutions of the Yang–Baxter equations. Pac. J. Math. 141(2), 311–332 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  47. Majid, S.: Physics for algebraists: noncommutative and noncocommutative Hopf algebras by a bicrossproduct construction. J. Algebra 130(1), 17–64 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  48. Majid, S.: Foundations of Quantum Group Theory. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  49. Takeuchi, M.: Matched pairs of groups and bismash products of Hopf algebras. Comm. Algebra 9(8), 841–882 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  50. Esen, O., Sütlü, S.: Matched pairs decomposition of vlasov equation. In preperation (2016)

  51. Marsden, J.E., Misiołek, G., Perlmutter, M., Ratiu, T.S.: Symplectic reduction for semidirect products and central extensions. Differ. Geom. Appl 9(1), 173–212 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  52. Marsden, J.E., Raţiu, T., Weinstein, A.: Semidirect products and reduction in mechanics. Trans. Am. Math. Soc. 281(1), 147–177 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  53. Ratiu, T.S.: The motion of the free \(n\)-dimensional rigid body. Indiana Univ. Math. J. 29(CAG-ARTICLE-1980-001):609–629 (1980)

  54. Ebin, D.G., Marsden, J.E.: Groups of diffeomorphisms and the motion of an incompressible fluid. Ann. Math. 92(1), 102–163 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  55. Marsden, J.E., Weinstein, A., Ratiu, T., Schmid, R., Spencer, R.G.: Hamiltonian systems with symmetry, coadjoint orbits and plasma physics. In: Proceedings of the IUTAM-ISIMM Symposium on Modern Developments in Analytical Mechanics 117, No. CAG-CONF-1983-001, pp. 289–340. (1983)

  56. de Groot, S.R., Mazur, P.: Non-equilibrium Thermodynamics. Dover Publications, New York (1984)

    MATH  Google Scholar 

  57. Cendra, H., Holm, D.D., Hoyle, M.J.W., Marsden, J.E.: The Maxwell–Vlasov equations in Euler–Poincaré form. J. Math. Phys. 39(6), 3138–3157 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  58. Landau, L.D., Lifshitz, E.M.: The Classical Theory of Fields Volume 2 in Course of Theoretical Physics. Butterworth Heinemann, Oxford (1975)

    Google Scholar 

  59. Holm, D.D.: Hamiltonian dynamics of a charged fluid, including electro-and magnetohydrodynamics. Phys. Lett. A 114(3), 137–141 (1986)

    Article  MathSciNet  Google Scholar 

  60. Kroeger, M., Huetter, M.: Automated symbolic calculations in nonequilibrium thermodynamics. Comput. Phys. Commun. 181, 2149–2157 (2010)

    Article  Google Scholar 

  61. Spencer, R.G., Kaufman, A.N.: Hamiltonian-structure of 2-fluid plasma dynamics. Phys. Rev. A 25(4), 2437–2439 (1981)

    Article  MathSciNet  Google Scholar 

  62. Holm, D.D., Kupershmidt, B.A.: Poisson brackets and clebsch representations for magnetohydrodynamics, multifluid plasmas, and elasticity. Phys. D 6(3), 347–363 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  63. Pavelka, M., Maršík, F., Klika, V.: Consistent theory of mixtures on different levels of description. Int. J. Eng. Sci. 78, 192–217 (2014)

    Article  MathSciNet  Google Scholar 

  64. Goedbloed, J.P., Poedts, S.: Principles of Magnetohydrodynamics: With Applications to Laboratory and Astrophysical Plasmas. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  65. Holm, D.D., Kupershmidt, B.A.: Noncanonical Hamiltonian-formulation of ideal magnetohydrodynamics. Phys. D 7(1–3), 330–333 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  66. Morrison, P.J., Greene, J.M.: Noncanonical Hamiltonian density formulation of hydrodynamics and ideal magnetohydrodynamics. Phys. Rev. Lett. 45, 790–794 (1980)

    Article  MathSciNet  Google Scholar 

  67. Morrison, P.J., Greene, J.M.: Noncanonical Hamiltonian density formulation of hydrodynamics and ideal magnetohydrodynamics. Phys. Rev. Lett. 48, 569–569 (1982)

    Article  Google Scholar 

  68. Casimir, H.B.G.: On Onsager’s principle of microscopic reversibility. Rev. Mod. Phys. 17, 343–350 (1945)

    Article  Google Scholar 

  69. Onsager, L.: Reciprocal relations in irreversible processes. I. Phys. Rev. 37, 405–426 (1931)

    Article  MATH  Google Scholar 

  70. Onsager, L.: Reciprocal relations in irreversible processes. II. Phys. Rev. 38, 2265–2279 (1931)

    Article  MATH  Google Scholar 

  71. Jou, D., Casas-Vázquez, J., Lebon, G.: Extended Irreversible Thermodynamics, 4th edn. Springer, New York (2010)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

M. P. is grateful to professor František Maršík for his generous support and for revealing the world of thermodynamics. O.E. is grateful to professor Hasan Gümral for the enlightening discussions on the Lie–Poisson dynamics and to professor Serkan Sütlü for the invaluable comments on the applications of the matched pair dynamics in case of the field theories. This project was supported by Natural Sciences and Engineering Research Council of Canada (NSERC). The work was partially developed within the POLYMEM project, Reg. no CZ.1.07/2.3.00/20.0107, that is co-funded from the European Social Fund (ESF) in the Czech Republic: “Education for Competitiveness Operational Programme”, from the CENTEM project, Reg. no. CZ.1.05/2.1.00/03.0088, co-funded by the ERDF as part of the Ministry of Education, Youth and Sports OP RDI programme and, in the follow-up sustainability stage, supported through CENTEM PLUS (LO1402) by financial means from the Ministry of Education, Youth and Sports under the “National Sustainability Programme I”. Further, this work was also supported by Charles University in Prague, project GA UK No 70515, and by Czech Science Foundation, project no. 17-15498Y.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Pavelka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esen, O., Pavelka, M. & Grmela, M. Hamiltonian coupling of electromagnetic field and matter. Int J Adv Eng Sci Appl Math 9, 3–20 (2017). https://doi.org/10.1007/s12572-017-0179-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12572-017-0179-4

Keywords

Navigation