Skip to main content
Log in

On the solution of the Neumann Poisson problem arising from a compact differencing scheme using the full multi-grid method

  • Published:
International Journal of Advances in Engineering Sciences and Applied Mathematics Aims and scope Submit manuscript

Abstract

A methodology for the numerical solution of the Neumann–Poisson problem for pressure that arises during the simulation of the incompressible Navier–Stokes equations on non-staggered grids is presented in this study. A sixth order compact differencing scheme has been used for discretizing the governing equation. A general procedure for implementing the discretized form of the integral constraint is proposed. Furthermore, different strategies for handling the corners in a rectangular domain are proposed and evaluated. Solutions for a model problem with a known analytical solution have been obtained on different grids using the full multi-grid technique with Bi-Conjugate Gradient Stabilized method as the smoother. Systematic order studies have been carried out. These bring out the fact that the overall order of the numerical solution is determined by the order of the discretization used for the boundary condition in the case of the Neumann–Poisson problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Moin, P., Mahesh, K.: Direct numerical simulation: a tool in turbulence research. Ann. Rev. Fluid Mech. 30, 539–578 (1998)

    Article  MathSciNet  Google Scholar 

  2. Lele, S.K.: Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103, 16–42 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  3. Babu, V., Korpela, S.A.: Numerical solution of the incompressible three-dimensional navier-stokes equations. Comput. Fluids 23(5), 675–691 (1994)

    Article  MATH  Google Scholar 

  4. Ghia, U., Ghia, K.N., Ramamurti, R.: Multi-grid solution of Neumann pressure problem for viscous flows using primitive variables. In: 21st Aerospace Sciences Meeting. American Institute of Aeronautics and Astronautics, Reno (1983). doi:10.2514/6.1983-557

  5. Ferziger, J.H., Peric, M.: Comput. Methods Fluid Dyn. Springer, Berlin (1992)

    Google Scholar 

  6. Turkel, E., Gordon, D., Gordon, R., Tsynkov, S.: Compact 2d and 3d sixth order schemes for the helmholtz equation with variable wave number. J. Comput. Phys. 232(1), 272–287 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Carpenter, M.H., Gottileb, D., Abarbanel, S.: The stability of numerical boundary treatments for compact high-order finite difference schemes. J. Comput. Phys. 108, 272–295 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Tyliszczak, A.: A high-order compact difference algorithm for half-staggered grids for laminar and turbulent incompressible flows. J. Comput. Phys. 276, 438 – 467 (2014). ISSN 0021-9991. doi:10.1016/j.jcp.2014.07.043. http://www.sciencedirect.com/science/article/pii/S0021999114005361

  9. Wilson, R.V., Demuren, A.O., Carpenter, M.: Higher order compact schemes for numerical simulation of incompressible flows. ICSE Rep. 98(13), 1–40 (1998)

    Google Scholar 

  10. Strikwerda, J.C.: High-order-accurate schemes for incompressible viscous flow. Int. J. Numer. Methods Fluids 24(7), 715–734 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Sanderson, C.: Armadillo: an open source c++ linear algebra library for fast prototyping and computationally intensive experiments. Technical Report NICTA, pp. 1–16 (2010). http://arma.sourceforge.net/armadillo_nicta_2010.pdf

  12. Babu, V., Korpela, S.A.: On the direct solution of Poisson’s equation on a non-uniform grid. J. Comput. Phys. 104(1), 93–98 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. Choi, S-C.: Iterative methods for singular linear equations and least-squares problems. Ph.D. thesis, Institute of Computational and Mathematical Engineering, Stanford University (2006)

  14. Paige, C.C., Saunders, M.A.: Lsqr: an algorithm for sparse linear equations and sparse least squares. ACM Trans. Math. Softw. 8(1), 43–71 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  15. Van der Vorst, H.A.: Bi-cgstab: a fast and smoothly converging variant of bi-cg for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 13(2), 631–644 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  16. Wang, Y., Zhang, J.: Sixth order compact scheme combined with multigrid method and extrapolation technique for 2d Poisson equation. J. Comput. Phys. 228, 137–146 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Briggs, W.L., Van Henson, E., McCormick, S.F.: Multigrid Tutorial. SIAM, California (2000). doi:10.1137/1.9780898719505

  18. Oberkampf, W.L., Roy, C.J.: Verification and Validation in Scientific Computing. Cambridge University Press, New York (2010)

    Book  MATH  Google Scholar 

  19. Smith, G.D.: Numerical Solution of Partial Differential Equations: Finite Difference Methods. Clarendon Press, Oxford (1985)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Babu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trinath, G., Babu, V. On the solution of the Neumann Poisson problem arising from a compact differencing scheme using the full multi-grid method. Int J Adv Eng Sci Appl Math 8, 249–258 (2016). https://doi.org/10.1007/s12572-016-0172-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12572-016-0172-3

Keywords

Navigation