Skip to main content
Log in

Abstract

Soft tissues grow and remodel in response to mechanical loading. In this work soft tissue is modeled as a homogeneous mixture of two constituents, namely elastin and collagen. It is assumed that elastin is neither produced nor removed and its mass remains constant, whereas collagen turns over depending on the stress in the tissue. A phenomenological continuum model is developed where the response of elastin is assumed to be viscoelastic. The response of collagen is assumed to be elastic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Jaalouk, D.E., Lammerding, J.: Mechanotransduction gone awry. Nat. Rev. Mol. Cell Biol. 10, 63–73 (2009)

    Article  Google Scholar 

  2. Hsu, F.H.: The influences of mechanical loads on the form of a growing elastic body. J. Biomech. 1(4), 303–311 (1968)

    Article  Google Scholar 

  3. Skalak, R.: Growth as a finite displacement field. IUTAM Symposium on Finite Elasticity, Martinus Nijhoff Publishers, The Netherlands (1981)

  4. Fung, Y.C.: Biomechanics: Motion, Flow, Stress, Growth. Springer, New York (1990)

    Book  MATH  Google Scholar 

  5. Rodriguez, E.K., Hoger, A., McCulloch, A.D.: Stress-dependent finite growth in soft elastic tissues. J. Biomech. 27(4), 455–467 (1994)

    Article  Google Scholar 

  6. Menzel, A.: Modeling of anisotropic growth in biological tissues—a new approach and computational aspects. Biomech. Model Mechanobiol. 3(3), 147–171 (2005)

    Article  Google Scholar 

  7. Menzel, A.: Anisotropic remodeling of biological tissues. In: Holzapfel, G.A., Ogden, R.W. (eds.) Mechanics of Biological Tissue, pp. 91–104. Springer, Berlin (2006)

    Chapter  Google Scholar 

  8. Preziosi, L., Tosin, A.: Multiphase modelling of tumour growth and extracellular matrix interaction: mathematical tools and applications. J. Math. Biol 58, 625–656 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ateshian, G.A.: On the theory of reactive mixtures for modeling biological growth. Biomech. Model Mechanobiol. 6(6), 1–39 (2007)

    Article  Google Scholar 

  10. Cowin, S.C., Cardoso, L.: Mixture theory-based poroelasticity as a model of interstitial tissue growth. Mech. Mater. 44, 47–57 (2012)

    Article  Google Scholar 

  11. Humphrey, J.D., Rajagopal, K.R.: A constrained mixture model for growth and remodeling of soft tissues. Math. Models Methods Appl. Sci. 12, 407–430 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Baek, S., Rajagopal, K.R., Humphrey, J.D.: A theoretical model of enlarging intracranial fusiform aneurysms. J. Biomech. Eng. 128, 142–149 (2006)

    Article  Google Scholar 

  13. Na, S., Meininger, G.A., Humphrey, J.D.: A theoretical model for f-actin remodeling in vascular smooth muscle cells subjected to cyclic stretch. J. Theoret. Biol. 246, 87–99 (2007)

    Article  MathSciNet  Google Scholar 

  14. Gleason, R.L., Humphrey, J.D.: A mixture model of arterial growth and remodeling in hypertension: altered muscle tone and tissue turnover. J. Vasc. Res. 41, 352–363 (2004)

    Article  Google Scholar 

  15. Gleason, R.L., Humphrey, J.D.: Effects of a sustained extension on arterial growth and remodeling: a theoretical study. J. Biomech. 38, 1255–1261 (2005)

    Article  Google Scholar 

  16. Valentin, A., Humphrey, J.D.: Evaluation of fundamental hypotheses underlying constrained mixture models of arterial growth and remodelling. Phil. Trans. R. Phi. A 367, 3585–3606 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Thorne, B.C., Hayenga, H.N., Humphrey, J.D., Peirce, S.M.: Toward a multi-scale computational model of arterial adaptation in hypertension: verification of a multi-cell agent based model. Front. Physiol. 2(20), 1–12 (2011)

    Google Scholar 

  18. Rao, I.J., Rajagopal, K.R., Humphrey, J.D.: Biological growth and remodeling: a uniaxial example with possible application to tendons and ligaments. CMES 4, 439–455 (2003)

    MATH  Google Scholar 

  19. Ravindran, P., Kannan, K.: A study of growth and remodeling in soft tissues. Int. J. Adv. Eng. Sci. Appl. Math. 3, 106–110 (2011)

    Article  MathSciNet  Google Scholar 

  20. Mythravaruni, P., Ravindran, P.: A constitutive model for soft tissue and its application to a boundary value problem. ASME, San Diego, California, USA (2013)

    Book  Google Scholar 

  21. McAnulty, L.: Collagen synthesis and degradation in vivo. evidence for rapid rates of collagen turnover with extensive degradation of newly synthesized collagen in tissues of the adult rat. Collagen Relat. Res. 7(2), 93–104 (1987)

  22. Markus, J.B., Sophie, Y.W.: Entropic elasticity controls nanomechanics of single tropocollagen molecules. Biophys. J. 93(1), 37–43 (2007)

    Article  Google Scholar 

  23. Lillie, M.A., Gosline, J.M.: The effects of hydration on the dynamic mechanical properties of elastin. Biopolymers 29, 1147–1160 (1990)

    Article  Google Scholar 

  24. Lillie, M.A., Gosline, J.M.: The viscoelastic basis for the tensile strength of elastin. Int. J. Biol. Macromol. 30, 119–127 (2002)

    Article  Google Scholar 

  25. Rajagopal, K.R., Srinivasa, A.R.: A thermodynamic frame work for rate type fluid models. J. Non Newton. Fluid Mech. 88, 207–227 (2000)

    Article  MATH  Google Scholar 

  26. Rajagopal, K.R., Tao, L.: Mechanics of Mixtures, Series on Advances in Mathematics for Applied Sciences, vol. 35. World Scientfic, Singapore (1995)

    Google Scholar 

  27. Taber, L.A.: Biomechanics of growth, remodeling and morphogenesis. Appl. Mech. Rev. 48, 487–545 (1995)

    Article  Google Scholar 

  28. Lefevre, M., Rucker, R.B.: Aorta elastin turnover in normal and hypercholesterolemic japanese quail. Biochemica et Biophysica Acta 630(4), 519–529 (1980)

    Article  Google Scholar 

  29. Kannan, K., Rajagopal, K.R.: A thermodynamic framework for the transition of viscoelastic liquid to a viscoelastic solid. Math. Mech. Solids 9(1), 37 (2004)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parag Ravindran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mythravaruni, P., Ravindran, P. Growth and remodeling in soft tissues subjected to torsion. Int J Adv Eng Sci Appl Math 8, 39–45 (2016). https://doi.org/10.1007/s12572-016-0162-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12572-016-0162-5

Keywords

Navigation