Skip to main content

Advertisement

Log in

Detection of bovine growth hormone using conventional and lab-on-a-chip technologies: a review

  • Published:
International Journal of Advances in Engineering Sciences and Applied Mathematics Aims and scope Submit manuscript

Abstract

The bovine growth hormone is a common growth promoter used in dairy farming to enhance the milk and meat production. However, the use of growth hormone is forbidden or limited in many countries. Hence, it is important to develop very sensitive, fast and low-cost methods of detection of bovine growth hormone. This paper reviews the current state of art of detection of growth hormone using conventional techniques, as well as the recent developments of lab-on-a-chip technologies and their benefits for the detection of bovine growth hormone in milk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Cooke, B.A., King, R.J.B., Van Der Molen, H.: Hormones and Their Actions. Elsevier, New York (1988)

    Google Scholar 

  2. Asimov, G.S., Krouze, N.K.: The lactogenic preparations from the anterior pituitary and the increase in milk yield from cows. J. Dairy Sci. 20, 289–306 (1937)

    Article  Google Scholar 

  3. Bauman, D.E., Vernon, R.G.: Effects of exogenous bovine somatotropin on lactation. Annu. Rev. Nutr. 13, 437–461 (1993)

    Article  Google Scholar 

  4. Zhang, X., Nieforth, K., Lang, J.M., Rouzier-Panis, R., Reynes, J., Dorr, A., Kolis, S., Stiles, M.R., Kinchelow, T., Patel, I.H.: Pharmacokinetics of plasma enfuvirtide after subcutaneous administration to patients with human immunodeficiency virus: inverse Gaussian density absorption and 2-compartment disposition. Clin. Pharmacol. Ther. 72, 10 (2002)

    Article  Google Scholar 

  5. John, H., Walden, M., Schäfer, S., Genz, S., Forssmann, W.G.: Analytical procedures for quantification of peptides in pharmaceutical research by liquid chromatography–mass spectrometry. Anal. Bioanal. Chem. 378, 883–897 (2004)

    Article  Google Scholar 

  6. Prokai-Tatrai, K., Prokai, L.: Prodrug design for brain delivery of small-and medium-sized neuropeptides. Methods Mol. Biol. (Clifton, NJ) 789, 313 (2011)

    Article  Google Scholar 

  7. Oosterkamp, A., Gelpi, E., Abian, J.: Quantitative peptide bioanalysis using column-switching nano liquid chromatography/mass spectrometry. J. Mass Spectrom. 33, 976–983 (1998)

    Article  Google Scholar 

  8. de Kock, S.S., Rodgers, J.P., Swanepoel, B.C.: Growth hormone abuse in the horse: preliminary assessment of a mass spectrometric procedure for IGF-1 identification and quantitation. Rapid Commun. Mass Spectrom. 15, 1191–1197 (2001)

    Article  Google Scholar 

  9. Weckwerth, W., Willmitzer, L., Fiehn, O.: Comparative quantification and identification of phosphoproteins using stable isotope labeling and liquid chromatography/mass spectrometry. Rapid Commun. Mass Spectrom. 14, 1677–1681 (2000)

    Article  Google Scholar 

  10. Souza, L.M., Boone, T.C., Murdock, D., Langley, K., Wypych, J., Fenton, D., Johnson, S., Lai, P.H., Everett, R., Hsu, R.Y.: Application of recombinant DNA technologies to studies on chicken growth hormone. J. Exp. Zool. 232, 465–473 (1984)

    Article  Google Scholar 

  11. Stelwagen, K., Verrinder Gibbins, A.M., McBride, B.W.: Applications of recombinant DNA technology to improve milk production: a review. Livest. Prod. Sci. 31, 153–178 (1992)

    Article  Google Scholar 

  12. Rochut, N., Le Bizec, B., Monteau, F., André, F.: ESI-MS for the measurement of bovine and porcine somatotropins: mass spectrometry for the study of natural mechanisms. Analusis 28, 280–284 (2000)

    Article  Google Scholar 

  13. Buttel, F.H.: The recombinant BGH controversy in the United States: toward a new consumption politics of food? Agric. Hum. Values 17, 5–20 (2000)

    Article  Google Scholar 

  14. Groenewegen, P.P., McBride, B.W., Burton, J.H., Elsasser, T.H.: Bioactivity of milk from bST-treated cows. J. Nutr. 120, 514–520 (1990)

    Google Scholar 

  15. Burkhardt, J.: On the ethics of technical change: the case of bST1. Technol. Soc. 14, 221–243 (1992)

    Article  Google Scholar 

  16. Ozhikandathil, J., Badilescu, S., Packirisamy, M.: Gold nanostructure-integrated silica-on-silicon waveguide for the detection of antibiotics in milk and milk products. In: Photonics North 2012, pp. 84120W–84120W-8 (2012)

  17. Ozhikandathil, J., Badilescu, S., Packirisamy, M.: A portable on-chip assay system for absorbance and plasmonic detection of recombinant bovine growth hormone in milk. J. Dairy Sci. 98, 4384–4391 (2014)

    Article  Google Scholar 

  18. Newbold, J., Heap, R., Prosser, C., Phipps, R., Adriaens, F., Hard, D.: The effect of bovine somatotropin and diet on somatotropin binding sites in hepatic tissue of lactating dairy cows. J. Dairy Sci. 80, 1085–1091 (1997)

    Article  Google Scholar 

  19. Dervilly-Pinel, G., Prévost, S., Monteau, F., Le Bizec, B.: Analytical strategies to detect use of recombinant bovine somatotropin in food-producing animals. TrAC Trends Anal. Chem. 53, 1–10 (2014)

    Article  Google Scholar 

  20. Vieira, M., Bianchi, I., Madeira, E., Roll, V., Oliveira, C., Viau, P., Pivato, I., Severo, N., Del Pino, F., Schneider, A.: Effect of recombinant bovine somatotropin on plasma concentrations of insulin-like growth factor I, insulin and membrane integrity of bull spermatozoa. Reprod. Domest. Anim. 45, 1110–1113 (2010)

    Article  Google Scholar 

  21. Ludwig, S.K., Smits, N.G., van der Veer, G., Bremer, M.G., Nielen, M.W.: Multiple protein biomarker assessment for recombinant bovine somatotropin (rbST) abuse in cattle. PLoS ONE 7, e52917 (2012)

    Article  Google Scholar 

  22. Eppard, P., Rogan, G., Boysen, B., Miller, M., Hintz, R., Hammond, B., Torkelson, A., Collier, R., Lanza, G.: Effect of high doses of a sustained-release bovine somatotropin on antibody formation in dairy cows. J. Dairy Sci. 75, 2959–2967 (1992)

    Article  Google Scholar 

  23. McHugh, C.M., Park, R.T., Sonksen, P.H., Holt, R.I.: Challenges in detecting the abuse of growth hormone in sport. Clin. Chem. 51, 1587–1593 (2005)

    Article  Google Scholar 

  24. Cacciatore, G., Eisenberg, S.W., Situ, C., Mooney, M.H., Delahaut, P., Klarenbeek, S., Huet, A., Bergwerff, A.A., Elliott, C.T.: Effect of growth-promoting 17β-estradiol, 19-nortestosterone and dexamethasone on circulating levels of nine potential biomarker candidates in veal calves. Anal. Chim. Acta 637, 351–359 (2009)

    Article  Google Scholar 

  25. Teale, P., Barton, C., Driver, P.M., Kay, R.G.: Biomarkers: unrealized potential in sports doping analysis. Bioanalysis 1, 1103–1118 (2009)

    Article  Google Scholar 

  26. Smits, N.G.E., Bremer, M.G.E.G., Ludwig, S.K.J., Nielen, M.W.F.: Development of a flow cytometric immunoassay for recombinant bovine somatotropin-induced antibodies in serum of dairy cows. Drug Test. Anal. 4, 362–367 (2012)

    Article  Google Scholar 

  27. Ludwig, S.K., Smits, N.G., Bremer, M.G., Nielen, M.W.: Monitoring milk for antibodies against recombinant bovine somatotropin using a microsphere immunoassay-based biomarker approach. Food Control 26, 68–72 (2012)

    Article  Google Scholar 

  28. Pinel, G., Buon, R., Aviat, F., Larré, C., André-Fontaine, G., André, F., Le Bizec, B.: Recombinant bovine somatotropin misuse in cattle: evaluation of Western blotting and 2D electrophoresis methods on biological samples for the demonstration of its administration. Anal. Chim. Acta 529, 41–46 (2005)

    Article  Google Scholar 

  29. Wood, D.C., Salsgiver, W.J., Kasser, T.R., Lange, G.W., Rowold, E., Violand, B.N., Johnson, A., Leimgruber, R.M., Parr, G.R., Siegel, N.R.: Purification and characterization of pituitary bovine somatotropin. J. Biol. Chem. 264, 14741–14747 (1989)

    Google Scholar 

  30. Castigliego, L., Iannone, G., Grifoni, G., Rosati, R., Gianfaldoni, D., Guidi, A.: Natural and recombinant bovine somatotropin: immunodetection with a sandwich ELISA. J. Dairy Res. 74, 79–85 (2007)

    Article  Google Scholar 

  31. Zwickl, C.M., Smith, H.W., Bick, P.H.: Rapid and sensitive ELISA method for the determination of bovine somatotropin in blood and milk. J. Agric. Food Chem. 38, 1358–1362 (1990)

    Article  Google Scholar 

  32. Torkelson, A., Dwyer, K., Rogan, G., Ryan, R.: Radioimmunoassay of somatotropin in milk from cows administered recombinant bovine somatotropin. J. Dairy Sci. 70, 146 (1987)

    Google Scholar 

  33. Zhao, X., McBride, B., Trouten-Radford, L., Golfman, L., Burton, J.: Somatotropin and insulin-like growth factor-I concentrations in plasma and milk after daily or sustained-release exogenous somatotropin administrations. Domest. Anim. Endocrinol. 11, 209–216 (1994)

    Article  Google Scholar 

  34. Heutmekers, T.H.J., Bremer, M.G.E.G., Haasnoot, W., Nielen, M.W.F.: A rapid surface plasmon resonance (SPR) biosensor immunoassay for screening of somatotropins in injection preparations. Anal. Chim. Acta 586, 239–245 (2007)

    Article  Google Scholar 

  35. Le Breton, M.H., Beck-Henzelin, A., Richoz-Payot, J., Rochereau-Roulet, S., Pinel, G., Delatour, T., Le Bizec, B.: Detection of recombinant bovine somatotropin in milk and effect of industrial processes on its stability. Anal. Chim. Acta 672, 45–49 (2010)

    Article  Google Scholar 

  36. Borromeo, V., Berrini, A., Secchi, C., Brambilla, G.F., Cantafora, A.: Matrix-assisted laser desorption mass spectrometry for the detection of recombinant bovine growth hormone in sustained-release form. J. Chromatogr. B Biomed. Sci. Appl. 669, 366–371 (1995)

    Article  Google Scholar 

  37. Mishra, A., Goswami, T., Shukla, D.: An enzyme-linked immunosorbent assay (ELISA) to measure growth hormone level in serum and milk of buffaloes (Bubalus bubalis). Indian J. Exp. Biol. 45, 594 (2007)

    Google Scholar 

  38. Jindal, S., Ludri, R.: Growth hormone concentrations in lactating crossbred cows and buffaloes. Asian Aust. J. Anim. Sci. 3, 319–322 (1990)

    Article  Google Scholar 

  39. Namba, Y., Usami, M., Suzuki, O.: Highly sensitive electrochemiluminescence immunoassay using the ruthenium chelate-labeled antibody bound on the magnetic micro beads. Anal. Sci. 15, 1087–1093 (1999)

    Article  Google Scholar 

  40. Debad, J.D., Glezer, E.N., Wohlstadter, J., Sigal, G.B., Leland, J.K.: Clinical and biological applications of ECL. Electrogenerated Chemiluminescence, pp. 359–396 (2004)

  41. McGrath, M.F., Bogosian, G., Fabellar, A.C., Staub, R.L., Vicini, J.L., Widger, L.A.: Measurement of bovine somatotropin (bST) and insulin-like growth factor-1 (IGF-1) in bovine milk using an electrochemiluminescent assay. J. Agric. Food Chem. 56, 7044–7048 (2008)

    Article  Google Scholar 

  42. Committee, European.: Commission Decision of 12 August 2002 imp lementing Council Directive 96/23/EC concerning the performance of analyticalmethods and the interpretation of results. Off. Eur. J. Comm. 8, 8 (2002)

    Google Scholar 

  43. Ozhikandathil, J.: Microphotonics and Nanoislands Integrated Lab-on-Chips (LOCs) for the Detection of Growth Hormones in Milk (2012)

  44. Abgrall, P., Gue, A.: Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem—a review. J. Micromech. Microeng. 17, R15 (2007)

    Article  Google Scholar 

  45. Packirisamy, M., Badilescu, S.: BioMEMS: Science and Engineering Perspectives. CRC Press, New York (2011)

    Google Scholar 

  46. Bashir, R.: BioMEMS: state-of-the-art in detection, opportunities and prospects. Adv. Drug Deliv. Rev. 56, 1565–1586 (2004)

    Article  Google Scholar 

  47. Yakovleva, J., Davidsson, R., Bengtsson, M., Laurell, T., Emnéus, J.: Microfluidic enzyme immunosensors with immobilised protein A and G using chemiluminescence detection. Biosens. Bioelectron. 19, 21–34 (2003)

    Article  Google Scholar 

  48. Homola, J., Yee, S.S., Gauglitz, G.: Surface plasmon resonance sensors: review. Sensors Actuators B: Chem. 54, 3–15 (1999)

    Article  Google Scholar 

  49. Willets, K.A., Van Duyne, R.P.: Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 58, 267–297 (2007)

    Article  Google Scholar 

  50. Messica, A., Greenstein, A., Katzir, A.: Theory of fiber-optic, evanescent-wave spectroscopy and sensors. Appl. Opt. 35, 2274–2284 (1996)

    Article  Google Scholar 

  51. Ozhikandathil, J., Badilescu, S., Packirisamy, M.: Detection of fluorophore-tagged recombinant bovine somatotropin (rbST) by using a Silica-on-silicon (SOS)-PDMS lab-on-a-chip. IEEE Sens. J. 12, 2791–2798 (2012)

    Article  Google Scholar 

  52. Ozhikandathil, J., Packirisamy, M.: Detection of recombinant growth hormone by evanescent cascaded waveguide coupler on silica-on-silicon. J. Biophotonics 6, 457–467 (2013)

    Article  Google Scholar 

  53. Ozhikandathil, J., Packirisamy, M.: Monolithically integrated optical microfluidic chip by single step lithography and etching for detection of fluorophore tagged recombinant bovine somatotropin (rbST). J. Electrochem. Soc. 161, B3155–B3159 (2014)

    Article  Google Scholar 

  54. Medina-Sánchez, M., Miserere, S., Merkoçi, A.: Nanomaterials and lab-on-a-chip technologies. Lab Chip 12, 1932–1943 (2012)

    Article  Google Scholar 

  55. Chen, Y., Ming, H.: Review of surface plasmon resonance and localized surface plasmon resonance sensor. Photonic Sensors 2, 37–49 (2012)

    Article  Google Scholar 

  56. Zhang, Y., Tang, Y., Hsieh, Y.H., Hsu, C.Y., Xi, J., Lin, K.J., Jiang, X.: Towards a high-throughput label-free detection system combining localized-surface plasmon resonance and microfluidics. Lab Chip (2012)

  57. Ozhikandathil, J., Badilescuan, S., Packirisamy, J.D.M.: Gold nanoisland structures integrated in a lab-on-a-chip for plasmonic detection of bovine growth hormone. Biomed. Opt. 17, 077001 (2012)

    Google Scholar 

  58. Ozhikandathil, J., Packirisamy, M.: Nano-islands integrated evanescence-based lab-on-a-chip on silica-on-silicon and polydimethylsiloxane hybrid platform for detection of recombinant growth hormone. AIP Biomicrofluidics 6, 046501 (2012)

    Article  Google Scholar 

  59. Devi, P., Mahmoud, A.Y., Badilescu, S., Packirisamy, M., Jeevanandam, P., Truong, V.V.: Synthesis and surface modification of poly (dimethylsiloxane)-gold nanocomposite films for biosensing applications. In: The First International Conference on Biosciences, pp. 1–5 (2010)

  60. Ozhikandathil, J., Badilescu, S., Packirisamy, M.: Synthesis and characterization of silver-PDMS nanocomposite for the biosensing applications. In: Proceedings of SPIE, p. 800707 (2011)

  61. SadAbadi, H., Badilescu, S., Packirisamy, M., Wüthrich, R.: Integration of gold nanoparticles in PDMS microfluidics for lab-on-a-chip plasmonic biosensing of growth hormones. Biosens. Bioelectron. 44, 77–84 (2013)

    Article  Google Scholar 

  62. Schams, D., Graf, F., Meyer, J., Graule, B., Mauthner, M., Wollny, C.: Changes in hormones, metabolites, and milk after treatment with sometribove (recombinant methionyl bST) in Deutsches Fleckvieh and German black and white cows. J. Anim. Sci. 69, 1583–1592 (1991)

    Google Scholar 

  63. Le Breton, M., Rochereau-Roulet, S., Chéreau, S., Pinel, G., Delatour, T., Le Bizec, B.: Identification of cows treated with recombinant bovine somatotropin. J. Agric. Food Chem. 58, 729–733 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muthukumaran Packirisamy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozhikandathil, J., Badilescu, S. & Packirisamy, M. Detection of bovine growth hormone using conventional and lab-on-a-chip technologies: a review. Int J Adv Eng Sci Appl Math 7, 177–190 (2015). https://doi.org/10.1007/s12572-015-0153-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12572-015-0153-y

Keywords

Navigation