Skip to main content
Log in

Abstract

The paper presents 3D finite element simulation of a Love wave resonator using coupled resonance with ZnO nanorods for biosensing application. The variation in mode shape, phase velocity, and coupling coefficient with rotation angle for a Y-cut LiTaO3 crystal is reported. At rotation angle of 36° the leaky SAW is transformed into a perfect shear horizontal surface wave with high coupling coefficient. Mass sensitivity and electromechanical coupling coefficient of Love wave resonator are calculated for different guiding layer materials (ZnO, SiO2 and PMMA) of varying thickness. The mass sensitivity provided by PMMA is about 15 times that of SiO2 layer but coupling coefficient falls rapidly as its thickness increases, offering a narrow range of thickness of the guiding layer. Simulations are performed for ZnO nanorods of varying height (300–1800 nm) present over 315.605 MHz Love wave resonator having 4.7 μm thick SiO2 waveguide layer. The addition of double stranded DNA is simulated by applying its equivalent surface mass density on the sensor surface. Coupled resonance occurs when the resonance frequency of ZnO nanorods is close to the device operating frequency and causes frequency shift of about 10.5 MHz which is about 20 times greater than the value obtained in the absence of coupled resonance. Love wave device with resonant nanostructures operating in coupled resonance is a promising candidate for designing highly sensitive biosensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Campbell, C.: Surface Acoustic Wave Devices and Their Signal Processing Applications. Academic Press, San Diego (1989)

    Google Scholar 

  2. Länge, K., Rapp, B.E., Rapp, M.: Surface acoustic wave biosensors: a review. Anal. Bioanal. Chem. 391(5), 1509–1519 (2008)

    Article  Google Scholar 

  3. Powell, S.J., David, A., Kalantar-Zadeh, K., Wlodarski, W., Ippolito, G.: Layered surface acoustic wave chemical and bio-sensors. Encycl. Sens. X, 1–18 (2006)

    Google Scholar 

  4. Bisoffi, M., Hjelle, B., Brown, D.C., Branch, D.W., Edwards, T.L., Brozik, S.M., Bondu-Hawkins, V.S., Larson, R.S.: Detection of viral bioagents using a shear horizontal surface acoustic wave biosensor. Biosens. Bioelectron. 23(9), 1397–1403 (2008)

    Article  Google Scholar 

  5. Rocha, M.I.G., Jiménez, Y., Francis, L.A., Arnau, A.: Love wave biosensors: a review. In: Rinken, T. (ed.) State of the Art in Biosensors–General Aspects. InTech (2013). ISBN: 978-953-51-1004-0. doi:10.5772/53077

  6. Voiculescu, I., Nordin, A.N.: Acoustic wave based MEMS devices for biosensing applications. Biosens. Bioelectron. 33(1), 1–9 (2012)

    Article  Google Scholar 

  7. Fu, Y.Q., Luo, J.K., Du, X.Y., Flewitt, A.J., Li, Y., Markx, G.H., Walton, A.J., Milne, W.I.: Recent developments on ZnO films for acoustic wave based bio-sensing and microfluidic applications: a review. Sens. Actuators B Chem. 143(2), 606–619 (2010)

    Article  Google Scholar 

  8. Branch, D.W., Brozik, S.M.: Low-level detection of a Bacillus anthracis simulant using Love-wave biosensors on 36° YX LiTaO3. Biosens. Bioelectron. 19(8), 849–859 (2004). doi:10.1016/j.bios.2003.08.020

    Article  Google Scholar 

  9. McHale, G., Newton, M.I., Martin, F., Gizeli, E., Melzak, K.A.: Resonant conditions for Love wave guiding layer thickness. Appl. Phys. Lett. 79(21), 3542 (2001)

    Article  Google Scholar 

  10. Harding, G.L., Du, J., Dencher, P.R., Barnett, D., Howe, E.: Love wave acoustic immunosensor operating in liquid. Sens. Actuators A Phys. 61(1–3), 279–286 (1997)

    Article  Google Scholar 

  11. Gizeli, E.: Study of the sensitivity of the acoustic waveguide sensor. Anal. Chem. 72(24), 5967–5972 (2000)

    Article  Google Scholar 

  12. Josse, F., Bender, F., Cernosek, R.W.: Guided shear horizontal surface acoustic wave sensors for chemical and biochemical detection in liquids. Anal. Chem. 73(24), 5937–5944 (2001)

    Article  Google Scholar 

  13. Gizeli, E.: Design considerations for the acoustic waveguide biosensor. Smart Mater. Struct. 6(6), 700–706 (1997)

    Article  Google Scholar 

  14. Kalantar-Zadeh, K., Wlodarski, W., Chen, Y.Y., Fry, B.N., Galatsis, K.: Novel Love mode surface acoustic wave based immunosensors. Sens. Actuators B Chem. 91(1–3), 143–147 (2003)

    Article  Google Scholar 

  15. Tamarin, O., Déjous, C., Rebière, D., Pistré, J., Comeau, S., Moynet, D., Bezian, J.: Study of acoustic Love wave devices for real time bacteriophage detection. Sens. Actuators B Chem. 91(1–3), 275–284 (2003)

    Article  Google Scholar 

  16. Matatagui, D., Moynet, D., Fernández, M.J., Fontecha, J., Esquivel, J.P., Gràcia, I., Cané, C., Déjous, C., Rebière, D., Santos, J.P., Horrillo, M.C.: Detection of bacteriophages in dynamic mode using a Love-wave immunosensor with microfluidics technology. Sens. Actuators B Chem. 185, 218–224 (2013)

    Article  Google Scholar 

  17. Tigli, O., Bivona, L., Berg, P., Zaghloul, M.E.: Fabrication and characterization of a surface-acoustic-wave biosensor in CMOS technology for cancer biomarker detection. IEEE Trans. Biomed. Circuits Syst. 4(1), 62–73 (2010)

    Article  Google Scholar 

  18. Chiu, C.-S., Gwo, S.: Quantitative surface acoustic wave detection based on colloidal gold nanoparticles and their bioconjugates. Anal. Chem. 80(9), 3318–3326 (2008)

    Article  Google Scholar 

  19. Fourati, N., Lazerges, M., Vedrine, C., Fougnion, J.-M., Zerrouki, C., Rousseau, L., Lepeut, P., Bonnet, J.J., Pernelle, C.: Surface acoustic waves sensor for DNA-biosensor development. Sens. Lett. 7(5), 847–850 (2009)

    Article  Google Scholar 

  20. Hur, Y., Han, J., Seon, J., Pak, Y.E., Roh, Y.: Development of an SH-SAW sensor for the detection of DNA hybridization. Sens. Actuators A Phys. 120(2), 462–467 (2005)

    Article  Google Scholar 

  21. Sakong, J., Roh, Y., Roh, H.: SAW sensor system with micro-fluidic channels to detect DNA molecules. In: 2006 IEEE Ultrasonics Symposium, pp. 548–551 (2006)

  22. Schlensog, M.D., Gronewold, T.M.A., Tewes, M., Famulok, M., Quandt, E.: A Love-wave biosensor using nucleic acids as ligands. Sens. Actuators B Chem. 101(3), 308–315 (2004)

    Article  Google Scholar 

  23. Abdollahi, A., Jiang, Z., Arabshahi, S.A.: Evaluation on mass sensitivity of SAW sensors for different piezoelectric materials using finite-element analysis. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(12), 2446–2455 (2007)

    Article  Google Scholar 

  24. Rocha-Gaso, M.-I., Fernández-Díaz, R., Arnau-Vives, A., March-Iborra, C.: Mass sensitivity evaluation of a Love wave sensor using the 3D finite element method. In: 2010 IEEE International Frequency Control Symposium, pp. 228–231 (2010). doi: 10.1109/FREQ.2010.5556338

  25. Han, K., Yuan, Y.J.: Mass sensitivity evaluation and device design of a Love wave device for bond rupture biosensors using the finite element method. IEEE Sens. J. 14(8), 2601–2608 (2014). doi:10.1109/JSEN.2014.2312414

  26. Zhang, Z., Emanetoglu, N.W., Saraf, G., Chen, Y., Wu, P., Zhong, J., Lu, Y., Chen, J., Mirochnitchenko, O., Inouye, M.: DNA immobilization and SAW response in ZnO nanotips grown on LiNbO3 substrates. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(4), 786–792 (2006). doi:10.1109/TUFFC.2006.1621506

    Google Scholar 

  27. Wang, Y., Zhang, S., Zhou, F., Fan, L., Yang, Y., Wang, C.: Love wave hydrogen sensors based on ZnO nanorod film/36° YX-LiTaO3 substrate structures operated at room temperature. Sens. Actuators B Chem. 158(1), 97–103 (2011). doi:10.1016/j.snb.2011.05.047

    Article  Google Scholar 

  28. Akhavan, O., Mehrabian, M., Mirabbaszadeh, K., Azimirad, R.: Hydrothermal synthesis of ZnO nanorod arrays for photocatalytic inactivation of bacteria. J. Phys. D Appl. Phys. 42(22), 225305 (2009)

    Article  Google Scholar 

  29. Ramakrishnan, N., Nemade, H.B., Palathinkal, R.P.: Resonant frequency characteristics of a SAW device attached to resonating micropillars. Sensors 12, 3789–3797 (2012)

    Article  Google Scholar 

  30. Ramakrishnan, N., Nemade, H.B., Palathinkal, R.P.: Finite element method simulation of a surface acoustic wave hydrogen sensor with palladium nano-pillars as sensing medium. Sens. Lett. 8(6), 824–828 (2010)

    Article  Google Scholar 

  31. Dybwad, G.L.: A sensitive new method for the determination of adhesive bonding between a particle and a substrate. J. Appl. Phys. 58(7), 2789 (1985)

    Article  Google Scholar 

  32. Pomorska, A., Shchukin, D., Hammond, R., Cooper, M.A., Grundmeier, G., Johannsmann, D.: Positive frequency shifts observed upon adsorbing micron-sized solid objects to a quartz crystal microbalance from the liquid phase. Anal. Chem. 82(6), 2237–2242 (2010)

    Article  Google Scholar 

  33. COMSOL Multiphysics. www.comsol.com

  34. Powell, D.A., Kalantar-Zadeh, K., Wlodarski, W., Ippolito, S.J.: Layered surface acoustic wave chemical and biosensors. Encycl. Sens. 4, 245–262 (2006)

    Google Scholar 

  35. Gore, J., Bryant, Z., Nöllmann, M., Le, M.U., Cozzarelli, N.R., Bustamante, C.: DNA overwinds when stretched. Nature 442(7104), 836–839 (2006)

    Article  Google Scholar 

  36. Marko, J.F., Cocco, S.: The micromechanics of DNA. Phys. World 16, 37–41 (2003)

  37. Hartschuh, R., Wargacki, S., Xiong, H., Neiswinger, J., Kisliuk, A., Sihn, S., Ward, V., Vaia, R., Sokolov, A.: How rigid are viruses. Phys. Rev. E 78(2), 021907 (2008)

    Article  Google Scholar 

  38. Nakamura, K., Kazumi, M., Shimizu, H.: SH-type and rayleigh-type surface waves on rotated Y-cut LiTaO3. In: Ultrasonics Symposium, pp. 819–822 (1977). doi:10.1109/ULTSYM.1977.196951

  39. Vives, A.A.: Piezoelectric Transducers and Applications. Springer, Berlin, Heidelberg (2008)

    Book  Google Scholar 

  40. Grate, J.W., Martin, S.J., White, R.M.: Acoustic wave microsensors. Part II. Anal. Chem. 65(22), 987A–996A (1993)

    Google Scholar 

  41. Darinskii, A.N., Weihnacht, M., Schmidt, H.: Surface acoustic wave scattering from steps, grooves, and strips on piezoelectric substrates. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(9), 2042–2050 (2010)

    Article  Google Scholar 

  42. Petersen, K.E.: Dynamic micromechanics on silicon: techniques and devices. IEEE Trans. Electron Devices 25(10), 1241–1250 (1978). doi:10.1109/T-ED.1978.19259

    Article  Google Scholar 

  43. Kim, M.T.: Influence of substrates on the elastic reaction of films for the microindentation tests. Thin Solid Films 283(1–2), 12–16 (1996)

    Article  Google Scholar 

  44. Yan, Z., Song, Z., Liu, W., Ren, H., Gu, N., Zhou, X., Zhang, L., Wang, Y., Feng, S., Lai, L., Chen, J.: Material and device properties of ZnO-based film bulk acoustic resonator for mass sensing applications. Appl. Surf. Sci. 253(24), 9372–9380 (2007)

    Article  Google Scholar 

  45. Chen, C., Shi, Y., Zhang, Y., Zhu, J., Yan, Y.: Size dependence of Young’s modulus in ZnO nanowires. Phys. Rev. Lett. 96(7), 075505 (2006)

    Article  Google Scholar 

  46. Kovacs, G., Anhorn, M., Engan, H.E., Visintini, G., Ruppel, C.C.W.: Improved material constants for LiNbO3 and LiTaO3. In: IEEE Ultrasonics Symposium, vol. 1, pp. 435–438 (1990). doi:10.1109/ULTSYM.1990.171403

Download references

Acknowledgments

The authors would like to thank Department of Electronics and Information Technology [No. 5(9)/2012-NANO (Vol. II)], Government of India for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shyam Trivedi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trivedi, S., Nemade, H.B. Finite element simulation of Love wave resonator for DNA detection. Int J Adv Eng Sci Appl Math 7, 210–218 (2015). https://doi.org/10.1007/s12572-015-0149-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12572-015-0149-7

Keywords

Navigation