Skip to main content
Log in

A variational approach to optical flow estimation of unsteady incompressible flows

  • Published:
International Journal of Advances in Engineering Sciences and Applied Mathematics Aims and scope Submit manuscript

Abstract

We consider optical flow estimation of flows with vorticity governed by 2D incompressible Euler and Navier–Stokes equations . A vorticity-streamfunction formulation and optimization techniques are used. We use Helmholtz decomposition of the velocity field and prove existence of an unique velocity and vorticity field for the linearized vorticity equations. Discontinuous galerkin finite elements are used to solve the vorticity equation for Euler’s flow to efficiently track discontinuous vortices. Finally we test our method with two vortex flows governed by Euler and Navier–Stokes equations at high Reynolds number which support our theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artif. Intell. 17(1–3), 185–203 (1981)

    Article  Google Scholar 

  2. Bauschke, H.H., Combettes, P.L.: Convex analysis and monotone operator theory in Hilbert spaces. In: Dilcher, K., Taylor, K. (eds.) CMS Books in Mathematics. Springer, New York. ISBN: 978-1-4419-9466-0 (2011)

  3. Ruhnau, P., Schnörr, C.: Optical Stokes flow: an imaging based control approach. Exp. Fluids 42, 61–78 (2007)

    Article  Google Scholar 

  4. Yuan, J., Ruhnau, P., Mémin, E., Schnörr, C.: Discrete orthogonal decomposition and variational fluid flow estimation. In: Scale-Space 2005, volume 3459 of Lecture Notes Computer Science, pp. 267–278. Springer (2005)

  5. Girault, V., Raviart, P.-A.: Finite Element Methods for Navier–Stokes Equations. Theory and Algorithms. Springer Series in Computational Mathematics. Springer, Berlin (1986)

    Google Scholar 

  6. Tröltzsch, F.: Optimal Control of Partial Differential Equations: Theory, Methods and Applications. Graduate Studies in Mathematics, vol. 112, American Mathematical Society, USA (2010)

  7. Liu, T., Shen, L.: Fluid flow and optical flow. J. Fluid Mech 614, 253–291 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Heitz, D., Mémin, E., Schnörr, C.: Variational fluid flow measurement from image sequences: synopsis and perspectives. Exp. Fluids 48, 369–393 (2010)

    Article  Google Scholar 

  9. Cayula, J.-F., Cornillon, P.: Cloud detection from a sequence of SST images. Remote Sens. Environ. 55, 80–88 (1996)

    Article  Google Scholar 

  10. Leese, J.A., Novak, C.S., Taylor, V.R.: The determination of cloud pattern motions from geosynchronous satellite image data. Pattern Recognit. 2, 279–292 (1970)

    Article  Google Scholar 

  11. Fogel, S.V.: The estimation of velocity vector-fields from time varying image sequences. CVGIP: Image Underst. 53, 253–287 (1991)

    Article  MATH  Google Scholar 

  12. Wu, Q.X.: A correlation-relaxation labeling framework for computing optical flow—template matching from a new perspective. IEEE Trans. Pattern Anal. Mach. Intell. 17, 843–853 (1995)

    Article  Google Scholar 

  13. Parikh, J.A., DaPonte, J.S., Vitale, J.N., Tselioudis, G.: An evolutionary system for recognition and tracking of synoptic scale storm systems. Pattern Recognit. Lett. 20, 1389–1396 (1999)

    Article  Google Scholar 

  14. Logg, A., Mardal, K.-A., Wells, G.N.: Automated Solution of Differential Equations by the Finite Element Method. Springer, Berlin (2012)

    Book  MATH  Google Scholar 

  15. Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, S.: Optimization with PDE Constraints. Springer, Netherlands. ISBN 978-1-4020-8839-1 (2009)

  16. Aubert, G., Kornprobst, P.: A mathematical study of the relaxed optical flow problem in the space. SIAM J. Math. Anal. 30(6), 1282–1308 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  17. Aubert, G., Deriche, R., Kornprobst, P.: Computing optical flow via variational techniques. SIAM J. Math. Anal. 60(1), 156–182 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  18. Nagel, H.-H.: Displacement vectors derived from second-order intensity variations in image sequences. CGIP 21, 85–117 (1983)

    Google Scholar 

  19. Nagel, H.-H.: On the estimation of optical flow: relations between different approaches and some new results. AI 33, 299–324 (1987)

    Google Scholar 

  20. Nagel, H.-H.: On a constraint equation for the estimation of displacement rates in image sequences. IEEE Trans. PAMI 11, 13–30 (1989)

    Article  MATH  Google Scholar 

  21. Nagel, H.-H., Enkelmann, W.: An investigation of smoothness constraints for the estimation of displacement vector fields from image sequences. IEEE Trans. PAMI 8, 565–593 (1986)

    Article  Google Scholar 

  22. Papadakis, N., Mémin, E.: Variational assimilation of fluid motion from image sequence. SIAM J. Imaging Sci. 1(4), 343–363 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  23. Mukawa, N.: Estimation of shape, reflection coefficients and illuminant direction from image sequences. In: ICCV90, pp. 507–512 (1990)

  24. Corpetti, T., Mémin, E., Pérez, P.: Dense estimation of fluid flows. IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 365380 (2002)

    Article  Google Scholar 

  25. Nakajima, Y., Inomata, H., Nogawa, H., Sato, Y., Tamura, S., Okazaki, K., Torii, S.: Physics-based flow estimation of fluids. Pattern Recognit. 36(5), 1203–1212 (2003)

    Article  Google Scholar 

  26. Arnaud, E., Mémin, E., Sosa, R., Artana, G.: A fluid motion estimator for schlieren image velocimetry. In: ECCV06, I, pp. 198–210 (2006)

  27. Wayne Roberts, A., Varberg, Dale E.: Convex Functions. Academic Press, New York (1973)

    MATH  Google Scholar 

  28. Haussecker, H.W., Fleet, D.J.: Computing optical flow with physical models of brightness variation. IEEE Trans. Pattern Anal. Mach. Intell. 23(6), 661–673 (2001)

    Article  Google Scholar 

  29. Cockburn, B., Shu, C.-W.: The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141(2), 199–224 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  30. Cockburn, B., Shu, C.-W.: Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16(3), 173–261 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  31. Cockburn, B., Karniadakis, G.E., Shu, C.-W.: Discontinuous Galerkin methods. Theory, computation and applications. Lecture Notes in Computational Science and Engineering. Springer, Berlin (2000)

  32. Arlotti, L., Banasiak, J., Lods, B.: A new approach to transport equations associated to a regular field: trace results and well-posedness. Mediterr. J. Math. 6, 367–402 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  33. Blanc, V.L.: \(L^1\)-stability of periodic stationary solutions of scalar convection-diffusion equations. J. Differ. Equ. 247, 1746–1761 (2009)

    Article  MATH  Google Scholar 

  34. Roy, S.: Reconstruction of a class of fluid flows by variational methods and inversion of integral transforms in tomography, Ph.D. dissertation, Tata Institute of Fundamental Research, CAM, Bangalore. https://www.dropbox.com/s/cbxblk3dg7kwxp5/Souvik_phd_thesis_compressed.pdf?dl=0 (2015)

  35. Roy, S., Chandrashekar, P., Vasudeva Murthy, A.S.: A variational approach to optical flow estimation of incompressible fluid flow. J. Comput. Vis. Sci. (2015, submitted)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Souvik Roy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, S., Chandrashekar, P. & Murthy, A.S.V. A variational approach to optical flow estimation of unsteady incompressible flows. Int J Adv Eng Sci Appl Math 7, 149–167 (2015). https://doi.org/10.1007/s12572-015-0147-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12572-015-0147-9

Keywords

Mathematics Subject Classification

Navigation