Skip to main content
Log in

A pre-tensioned finite element model of ocular accommodation and presbyopia

  • Published:
International Journal of Advances in Engineering Sciences and Applied Mathematics Aims and scope Submit manuscript

Abstract

Accommodation is the ability of the eye to dynamically alter its optical power. Presbyopia is the progressive loss of this ability with age. We have developed the first pre-tensioned finite element model of accommodation and used it to address the question of whether increasing lens stiffness alone is sufficient to cause presbyopia. Intrinsic resting forces and accommodative displacement were calibrated for a 20 year-old lens’ stiffness over a 7 D optical power change. Accommodation was simulated by displacing the distal zonule attachments towards the optical axis, mimicking the movement of the ciliary body when the ciliary muscle contracts. The optical power, capsule strain, and radial zonule forces were extracted for one full cycle of accommodation. These responses were compared for lenses having elastic moduli corresponding to 14, 20, 39.5, and 62.7-year-old human lenses. Accommodative power decreased from 20 to 62.5 years of age from 7 to 2 D. This change was less than in experiments where changes in lens power go to zero around age 50. Thus, lens elasticity contributes significantly to presbyopia but is not the sole cause. Lens diameter and thickness changes were within 20 % of reported values, indicating that the present model yields a good approximation of the changes in lens shape during accommodation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. von Helmholtz, H.: Uber die akkommodation des auges. Arch. Ophthalmol. 1, 1–74 (1855)

    Google Scholar 

  2. Koretz, J.F., Handelman, G.H.: How the human eye focuses. Sci. Am. 259, 92–99 (1988)

    Article  Google Scholar 

  3. Heys, K.R., Cram, S.L., Truscott, R.J.W.: Massive increase in the stiffness of the human lens nucleus with age: the basis for presbyopia? Mol. Vis. 10, 956–963 (2004)

    Google Scholar 

  4. Weeber, H.A., Eckert, G., Pechhold, W., van der Heijde, Rob G.L.: Stiffness gradient in the crystalline lens. Graefes Arch. Clin. Exp. Ophthalmol. 245(9), 1357–1366 (2007)

    Article  Google Scholar 

  5. Reilly, M.A.: A quantitative geometric mechanics lens model: insights into the mechanisms of accommodation and presbyopia. Vis. Res. 103, 20–31 (2014)

    Article  Google Scholar 

  6. Krag, S., Andreassen, T.T.: Mechanical properties of the human lens capsule. Prog. Retin. Eye Res. 22, 749–767 (2003)

    Article  Google Scholar 

  7. Burd, H.J., Judge, S.J., Cross, J.A.: Numerical modelling of the accommodating lens. Vis. Res. 42, 2235–2251 (2002)

    Article  Google Scholar 

  8. Weeber, H.A., van der Heijde, Rob G.L.: On the relationship between lens stiffness and accommodative amplitude. Exp. Eye Res. 85(5), 602–607 (2007)

    Article  Google Scholar 

  9. Anderson, H.A., Hentz, G., Glasser, A., Stuebing, K.K., Manny, R.E.: Minus-lens-stimulated accommodative amplitude decreases sigmoidally with age: a study of objectively measured accommodative amplitudes from age 3. Invest. Ophthalmol. Vis. Sci. 49(7), 2919–2926 (2008)

    Article  Google Scholar 

  10. Wilkes, R. P.: A Whole Eye Finite Element Analysis of Accommodation. Ph.D., University of Texas at San Antonio (2014)

  11. Urs, R., Manns, F., Ho, A., Borja, D., Amelinckx, A., Smith, J., Jain, R., Augusteyn, R., Parel, J.-M.: Shape of the isolated ex vivo human crystalline lens. Vis. Res. 49, 74–83 (2009)

    Article  Google Scholar 

  12. Dubbelman, M., van der Heijde, G.L., Weeber, H.A.: Change in shape of the aging human crystalline lens with accommodation. Vis. Res. 45, 117–132 (2005)

    Article  Google Scholar 

  13. Norrby, S.: The Dubbelman eye model analysed by ray tracing through aspheric surfaces. Ophthalmic Physiol. Opt. 25(2), 153–161 (2005)

    Article  Google Scholar 

  14. Glasser, A., Campbell, M.C.: Biometric, optical and physical changes in the isolated human crystalline lens with age in relation to presbyopia. Vis. Res. 39(11), 1991–2015 (1999)

    Article  Google Scholar 

  15. Barraquer, R.I., Michael, R., Abreu, R., Lamarca, J., Tresserra, F.: Human lens capsule thickness as a function of age and location along the sagittal lens perimeter. Invest. Ophthalmol. Vis. Sci. 47, 2053–2060 (2006)

    Article  Google Scholar 

  16. Farnsworth, P.N., Shyne, S.E.: Anterior zonular shifts with age. Exp. Eye Res. 28(3), 291–297 (1979)

    Article  Google Scholar 

  17. Wilde, G., Burd, H.J., Judge, S.: Shear modulus data for the human lens determined from a spinning lens test. Exp. Eye Res. 97(1), 25–48 (2012)

    Article  Google Scholar 

  18. Fisher, R.F.: Elastic constants of the human lens capsule. J. Physiol. 201, 1–19 (1969)

    Article  Google Scholar 

  19. He, L., Donnelly, R., William, J., Stevenson, S.B., Glasser, A.: Saccadic lens instability increases with accommodative stimulus in presbyopes. J. Vis. 10(4), 1411–1416 (2010)

    Article  Google Scholar 

  20. Simulia.: Abaqus 6.11 Analysis User’s Manual, Dassault Systemes Simulia Corp., Providence, RI, USA (2011)

  21. Stark, L.: Presbyopia in light of accommodation. Am J Optom Physiol Opt 65(5), 407–416 (1988)

    Article  Google Scholar 

  22. Reilly, M.A., Hamilton, P.D., Perry, G., Ravi, N.: Comparison of the behavior of natural and refilled porcine lenses in a robotic lens stretcher. Exp. Eye Res. 88(3), 483–494 (2009)

    Article  Google Scholar 

  23. Bharadwaj, S.R., Schor, C.M.: Acceleration characteristics of human ocular accommodation. Vis. Res. 45(1), 17–28 (2005)

    Article  Google Scholar 

  24. Mordi, J.A., Ciuffreda, K.J.: Dynamic aspects of accommodation: age and presbyopia. Vis. Res. 44(6), 591–601 (2004)

    Article  Google Scholar 

  25. Manns, F., Parel, J.M., Denham, D., Billotte, C., Ziebarth, N., Borja, D., Fernandez, V., Aly, M., Arrieta, E., Ho, A., Holden, B.: Optomechanical response of human and monkey lenses in a lens stretcher. Invest. Ophthalmol. Vis. Sci. 48, 3260–3268 (2007)

    Article  Google Scholar 

  26. Burd, H.J., Judge, S.J., Cross, J.A.: Numerical modelling of the accommodating lens. Vis. Res. 42(18), 2235–2251 (2002)

    Article  Google Scholar 

  27. Hermans, E.A., Dubbelman, M., van der Heijde, G.L., Heethaar, R.M.: Estimating the external force acting on the human eye lens during accommodation by finite element modelling. Vis. Res. 46(21), 3642–3650 (2006)

    Article  Google Scholar 

  28. Hermans, E.A., Dubbelman, M., van der Heijde, G.L., Heethaar, R.M.: Change in the accommodative force on the lens of the human eye with age. Vis. Res. 48(1), 119–126 (2008)

    Article  Google Scholar 

  29. Ljubimova, D., Eriksson, A., Bauer, S.: Aspects of eye accommodation evaluated by finite elements. Biomech. Model. Mechanobiol. 7(2), 139–150 (2008)

    Article  Google Scholar 

  30. Lee, B., Litt, M., Buchsbaum, G.: Rheology of the vitreous body. Part I: viscoelasticity of human vitreous. Biorheology 29(5–6), 521–533 (1992)

    Google Scholar 

  31. Swindle, K.E., Hamilton, P.D., Ravi, N.: In situ formation of hydrogels as vitreous substitutes: viscoelastic comparison to porcine vitreous. J Biomed Mater Res A 87(3), 656–665 (2008)

    Article  Google Scholar 

  32. Scarcelli, G., Yun, S.H.: In vivo Brillouin optical microscopy of the human eye. Opt. Express 20(8), 9197–9202 (2012)

    Article  Google Scholar 

  33. Croft, M.A., McDonald, J.P., Katz, A., Lin, T.L., Lutjen-Drecoll, E., Kaufman, P.L.: Extralenticular and lenticular aspects of accommodation and presbyopia in human versus monkey eyes. Investig. Ophthalmol. Vis. Sci. 54(7), 5035–5048 (2013)

    Article  Google Scholar 

  34. Augusteyn, R.C.: Growth of the lens: in vitro observations. Clin. Exp. Optom. 91(3), 226–239 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge Harry Millwater, Jeremy Mann, and the UTSA Department of Mechanical Engineering for access to and support for the high performance computer (SHAMU) and technical support for Abaqus software at UTSA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew A. Reilly.

Ethics declarations

Conflict of Interest

The authors have no financial interest in the subject matter of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilkes, R.P., Reilly, M.A. A pre-tensioned finite element model of ocular accommodation and presbyopia. Int J Adv Eng Sci Appl Math 8, 25–38 (2016). https://doi.org/10.1007/s12572-015-0141-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12572-015-0141-2

Keywords

Navigation