Skip to main content
Log in

Limitations and improvements of standard spectral methods for pricing standard options

  • Published:
International Journal of Advances in Engineering Sciences and Applied Mathematics Aims and scope Submit manuscript

Abstract

We discuss the issue of how to improve the efficiency of standard spectral methods for pricing options. As a prototype example, we consider American options which are frequently used in the market as they enjoyed the early exercise opportunities. Such options are often modeled by nonlinear partial differential equations, solutions of which are not obtainable in a closed form and thus necessitates robust numerical techniques. For the discretisation in space (asset) direction, we use a rational spectral methods. For time integration involved in the process, we looked at comparing the efficiency of the method by using contour integral method based on the inversion of the Laplace transform, and the Exponential Time Differencing Runge–Kutta method of order 4. It is known that when these spectral methods are applied to option pricing problems, they no longer retain their higher order convergence. This order reduction is attributed due to the non-smooth initial conditions. To overcome this, we propose a domain decomposition method based on our rational spectral method. For the problem under consideration, we divide the domain into two sub-domains, with the transition point as the strike price. To represent the solution in each sub-domains, we choose to approximate the solution by linear rational interpolants due to their improved stability properties as compared to the polynomial interpolant. Comparative results are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gesk, R., Johnson, H.: The american put options valued analytically. J. Financ. 39(5), 1511–1524 (1984)

    Article  Google Scholar 

  2. Kuske, R., Keller, J.: Optimal exercise boundary for american put option. Appl. Math. Financ. 5(2), 107–116 (1998)

    Article  MATH  Google Scholar 

  3. Mallier, R., Alobaidi, G.: Laplace transforms and american options. Appl. Math. Financ. 7(2), 241–256 (2000)

    Article  MATH  Google Scholar 

  4. Wu, L., Kwok, Y.: A front-fixing finite difference method for the valuation of Americain options. J. Financ. Eng. 6(2), 83–97 (1997)

    Google Scholar 

  5. Zhu, S.: An exact and explicit solution for the valuation of American put options. Quant. Financ. 6, 229–242 (2006)

    Article  MATH  Google Scholar 

  6. Brennan, M., Schwartz, E.: The valuation of american put options. J. Financ. 32(32), 449–462 (1977)

    Article  Google Scholar 

  7. Brennan, M., Schwartz, E.: Finite difference methods and jumps processes arising in the pricing of contingent claims: A synthesis. J. Financ. Quant. Anal. 13(3), 461–474 (1978)

    Article  Google Scholar 

  8. Cox, J., Ross, S., Rubinstein, M.: Option pricing: A simplified approach. J. Financ. Econom. 7(2), 229–264 (1979)

    Article  MATH  Google Scholar 

  9. Han, H., Wu, X.: Fast numerical method for the black-scholes equations of american options. SIAM J. Numeric. Anal. 41, 2081–2095 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Nielsen, B., Skavhaug, O., Tveito, A.: Penalty and front-fixing methods for the numerical solution of american option problems. J. Comput. Financ. 5, 69–97 (2002)

    Google Scholar 

  11. Houstis, E., Pantazopoulos, K., Kortesis, S.: A front-tracking finite difference method for the valuation of american options. Comput. Econom. 12(3), 255–273 (1998)

    Article  MATH  Google Scholar 

  12. Tangman, D., Gopaul, A., Bhuruth, M.: Numerical pricing of options using high-order compact finite difference schemes. J. Comput. Appl. Math. 218, 270–280 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. Chen, X., Chadam, J., Stamicar, R.: The optimal exercise boundary for american put option: analytic and numerical approximation. Preprint (2000)

  14. Forsyth, P., Vetzal, K.: Quadratic convergence for valuing american options using a penalty method. SIAM J. Sci. Comput. 23(6), 2095–2122 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ngounda, E., Patidar, K., Pindza, E.: Contour integral for european options with jumps. Commun. Nonlinear Sci. Numeric. Simul. 18(3), 478–492 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  16. Talbot, A.: The accurate numerical inversion of laplace transforms. IMA J. Appl. Math. 23(1), 97–120 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  17. Trefethen, L.: Spectral Method in MATLAB. SIAM, Philadelphia (2000)

    Book  Google Scholar 

  18. Zhu, Y., Wu, X., Chern, I.: Derivatives Securities and Difference Methods. Springer, New York (2004)

    Book  Google Scholar 

  19. Baltensperger, R., Berrut, J., Noël, B.: Exponential convergence of a linear rational interpolant between transformed chebyshev points. Math. Comput. 68, 1109–1120 (1999)

    Article  MATH  Google Scholar 

  20. Berrut, J., Mittelmann, H.: Rational interpolation through the optimal attachment of poles to the interpolating polynomial. Numer. Algorithms 23(4), 315–328 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  21. Tee, W.: A rational collocation with adaptively transformed chebyshev grid points. SIAM J. Sci. Comput. 58(5), 1798–1811 (2006)

    Article  MathSciNet  Google Scholar 

  22. Schneider, C., Werner, W.: Some aspect of rational interpolation. Math. Comput. 47, 285–299 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  23. Cox, S., Matthews, P.: Exponential time differencing for stiff system. J. Comput. Phys. 176, 430–455 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  24. Hochbruck, M., Lubich, C., Selhofer, H.: Exponential integration for large systems of differential equations. SIAM J. Sci. Comput. 19, 1552–1574 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  25. Hochbruck, M., Ostermann, A.: Explicite exponential Runge–Kutta methods for semilinear parabolic problems. SIAM J. Numeric. Anal. 43(3), 1069–1090 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  26. Kassam, A., Trefethen, L.: Fourth-order time stepping for stiff pdes. J. Comput. Phys. 176, 430–455 (2002)

    Article  MathSciNet  Google Scholar 

  27. Spiegel, M.: Theory and Problems of Laplace Transforms. McGraw-Hill, New York (1965)

    Google Scholar 

  28. Weideman, J., Trefethen, L.: Parabolic and hyperbolic contours for computing the bromwich integral. Math. Comput. 76(259), 1341–1356 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge anonymous referees for their valuable suggestions. E. Ngounda would like to acknowledge the Office of Research and Development, University of the Western Cape, for the financial support. KCP’s research was also supported by the South African National Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kailash C. Patidar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ngounda, E., Patidar, K.C. Limitations and improvements of standard spectral methods for pricing standard options. Int J Adv Eng Sci Appl Math 7, 106–113 (2015). https://doi.org/10.1007/s12572-015-0140-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12572-015-0140-3

Keywords

Navigation