Skip to main content
Log in

Abstract

An exact discontinuity capturing central solver developed recently, named method of optimal viscosity for enhanced resolution of shocks (MOVERS) (Jaisankar and Raghurama Rao in J Comput Phys 228(3):770–798, 2009), is analyzed and improved further to make it entropy stable. MOVERS, which is designed to capture steady shocks and contact discontinuities exactly by enforcing the Rankine–Hugoniot jump condition directly in the discretization process, is a low diffusive algorithm in a simple central discretization framework, free of complicated Riemann solvers and flux splittings. However, this algorithm needs an entropy fix to avoid non-smoothness in the expansion regions. The entropy conservation equation is used as a guideline to introduce an optimal numerical diffusion in the smooth regions and a limiter based switchover is introduced for numerical diffusion based on jump conditions at the large gradients. The resulting new scheme is entropy stable, accurate and captures steady discontinuities exactly while avoiding an entropy fix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Roe, P.L.: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43(2), 357–372 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  2. Osher, S., Solomon, F.: Upwind difference schemes for hyperbolic systems of conservation laws. Math. Comput. 38(158), 339–374 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  3. Harten, A., Lax, P.D., Leer, B.V.: On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev. 25(1), 35–61 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  4. Toro, E.F., Spruce, M., Speares, W.: Restoration of the contact surface in the HLL-Riemann solver. Shock Waves 4(1), 25–34 (1994)

    Article  MATH  Google Scholar 

  5. Einfeldt, B., Munz, C.-D., Roe, P.L., Sjögreen, B.: On Godunov-type methods near low densities. Journal of computational physics 92(2), 273–295 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  6. Balsara, D.S.: Multidimensional HLLE Riemann solver: application to Euler and magnetohydrodynamic flows. J. Comput. Phys. 229(6), 1970–1993 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  7. Quirk, J.J.: A contribution to the great Riemann solver debate. Int. J. Numer. Methods Fluids 18(6), 555–574 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  8. Liou, M.-S.: Mass flux schemes and connection to shock instability. J. Comput. Phys. 160(2), 623–648 (2000)

    Article  MATH  Google Scholar 

  9. Pandolfi, M., D’Ambrosio, D.: Numerical instabilities in upwind methods: analysis and cures for the carbuncle phenomenon. J. Comput. Phys. 166(2), 271–301 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Steger, J., Warming, R.: Flux vector splitting methods for inviscid gasdynamic equations with applications to finite difference methods. J. Comput. Phys. 40, 263–293 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  11. van Leer, B.: Flux vector splitting for the Euler equations. Lecture Notes in Physics, vol. 170, pp. 507–512, Springer (1982)

  12. Liou, M.-S., Steffen, C.J.: A new flux splitting scheme. J. Comput. Phys. 107(1), 23–39 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  13. Liou, M.-S.: A sequel to AUSM: AUSM+. J. Comput. Phys. 129(2), 364–382 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  14. Liou, M.-S.: A sequel to AUSM, part II, AUSM+-up for all speeds. J. Comput. Phys. 214(1), 137–170 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. Zha, G.-C., Bilgen, E.: Numerical solutions of Euler equations by using a new flux vector splitting scheme. Int. J. Numer. Methods Fluids 17(2), 115–144 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  16. Toro, E., Vázquez-Cendón, M.: Flux splitting schemes for the Euler equations. Comput. Fluids 70, 1–12 (2012)

    Article  MathSciNet  Google Scholar 

  17. Xie, W., Li, H., Tian, Z., Pan, S.: A low diffusion flux splitting method for inviscid compressible flows. Comput. Fluids 112, 83–93 (2015)

    Article  MathSciNet  Google Scholar 

  18. Jaisankar, S., Raghurama Rao, S.V.: A central Rankine–Hugoniot solver for hyperbolic conservation laws. J. Comput. Phys. 228(3), 770–798 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  19. Nessyahu, H., Tadmor, E.: Non-oscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. 87(2), 408–463 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kurganov, A., Tadmor, E.: New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations. J. Comput. Phys. 160, 241–282 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  21. Jaisankar, S., Raghurama Rao, S.V.: Diffusion regulation for Euler solvers. J. Comput. Phys. 221(2), 577–599 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  22. Central Station: A collection of references on high-resolution non-oscillatory central schemes. http://www.cscamm.umd.edu/centpack/publications/

  23. Rusanov, V.V.: Calculation of Interaction of Non-steady Shock Waves with Obstacles. NRC, Division of Mechanical Engineering, Washington, DC (1962)

    Google Scholar 

  24. Cockburn, B., Johnson, C., Shu, C.-W., Tadmor, E.: Advanced numerical approximation of nonlinear hyperbolic equations, ch. 4. In: Shu C.-W. (ed.) Essentially Non-oscillatory and Weighted Essentially Non-oscillatory Schemes for Hyperbolic Conservation Laws. Lecture Notes in Mathematics, vol. 1697, pp. 325–432, Springer, Berlin (1998)

  25. LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems, vol. 31. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  26. Tadmor, E.: Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems. Acta Numer. 12, 451–512 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  27. Zhang, S., Shu, C.-W.: A new smoothness indicator for the WENO schemes and its effect on the convergence to steady state solutions. J. Sci. Comput. 31(1–2), 273–305 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  28. Yee, H.: Construction of explicit and implicit symmetric tvd schemes and their applications. J. Comput. Phys. 68(1), 151–179 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  29. LeVeque, R.: Numerical Methods for Conservation Laws, vol. 132. Springer, New York (1992)

    Book  MATH  Google Scholar 

  30. Whitham, G.: Linear and Nonlinear Waves. Wiley, New York (1999)

    Book  MATH  Google Scholar 

  31. Naterer, G., Camberos, J.: Entropy-Based Design and Analysis of Fluids and Engineering Systems. CRC Press, New York (2008)

    Book  MATH  Google Scholar 

  32. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer, New York (1999)

    Book  MATH  Google Scholar 

  33. Sod, G.A.: A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J. Comput. Phys. 27(1), 1–31 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  34. Manna, M.: A three dimensional high resolution upwind finite volume Euler solver, Technical Note 180, von Karman Institute for Fluid Dynamics (1992)

  35. Jin, S., Xin, Z.: The relaxation schemes for systems of conservation laws in arbitrary space dimensions. Commun. Pure Appl. Math. 48(3), 235–276 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  36. Levy, D.W., Powell, K.G., van Leer, B.: Use of a rotated Riemann solver for the two-dimensional Euler equations. J. Comput. Phys. 106(2), 201–214 (1993)

    Article  MATH  Google Scholar 

  37. Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54(1), 115–173 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  38. Huang, K., Wu, H., Yu, H., Yan, D.: Cures for numerical shock instability in HLLC solver. Int. J. Numer. Methods Fluids 65(9), 1026–1038 (2011)

    Article  MATH  Google Scholar 

  39. Hillier, R.: Computation of shock wave diffraction at a ninety degrees convex edge. Shock Waves 1(2), 89–98 (1991)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Raghurama Rao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maruthi, N.H., Raghurama Rao, S.V. An entropy stable central solver for Euler equations. Int J Adv Eng Sci Appl Math 7, 134–148 (2015). https://doi.org/10.1007/s12572-015-0133-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12572-015-0133-2

Keywords

Navigation