Skip to main content
Log in

Parallel numerical computation of mixed convection in a square enclosure with multiple heat sources on Anucluster

Mixed convection in a square cavity

  • Published:
International Journal of Advances in Engineering Sciences and Applied Mathematics Aims and scope Submit manuscript

Abstract

The coupled nonlinear partial differential equations modelling the influence of multiple heat sources on the mixed convection process in a fluid saturated vertical porous square enclosure have been solved numerically by Galerkin finite element method in conjuction with the Krylov Solver BICGM. Detailed parallel numerical computations, based on the message passing libraries from ANULIB, have been carried out on an eight noded ANUCLUSTER to assess the influence of flow governing paremeters such as Rayleigh number and suction/injection velocity on mixed convection process. The obtained results have been analysed for heat and mass transfer in the form of isotherm, streamline and velocity vector plots. Local, cumulative and global heat fluxes have been calculated in the form of corresponding versions of Nusselt number. Computations have also been carried out for the case natural convection due the multiple hot sources. Nusselt numbers from mixed convection process are compared with those from natural convection process. Efficiency and speedup of the parallel computations on ANUCLUSTER have also been assessed and presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

\(V_{inj}\) :

Suction/injection velocity

D :

Width of the inlet and outlet

\(Q_{\xi }\) :

Cumulative heat flux along all hot bodies

\(Q_{\xi _{i}}\) :

Cumulative heat flux along \( i{\text {th}}\) hot body

\(Nu_{\partial \Omega _s^i}\) :

Nusselt number along the edges of \(i{\text{th}}\) hot body

\(N_i\) :

Interpolation function

Ra :

Rayleigh number

T :

Non-dimensional fluid temperature

UV :

Velocity components along the x and y directions

W :

Weight function

\(W_1\) :

Injection window

\(W_2\) :

Suction window

XY :

Non-dimensional Cartesian coordinates

\(\Gamma \) :

Boundary of domain

\(\Omega \) :

Domain of interest

\(\Omega _s^{i}\) :

\(i{\text{th}}\) hot body source

\(\Omega _s^{i,j}\) :

\(j{\text{th}}\) side of \(i{\text{th}}\) hot body source

\(\psi \) :

Non-dimensional stream function

References

  1. Bejan, A., Krus, A.D.: Heat Transfer Hand book. Wiley, New York (2003)

    Google Scholar 

  2. Ingham, D., Pop, I.: Transport Phenomena in Porous Media. Elsevier, Oxford (2005)

    Google Scholar 

  3. Ingham, D., Bejan, A., Mamut, A.: Emerging Technologies and Techniques in Porous Media. Kluwer, Dordrecht (2004)

    Book  MATH  Google Scholar 

  4. Nield, D.A., Bejan, A.: Convection in Porous Media. Springer, New York (1999)

    Book  MATH  Google Scholar 

  5. Pop, I., Ingham, D.: Convective Heat Tranfer: Mathematical and Computational Modelling of Viscous Fluid and Porous Media. Pergamon, Oxford (2001)

    Google Scholar 

  6. Vafai, K.: Hand Book of Porous Media, (2)th edn. Taylor & Francis, New York (2005)

    Google Scholar 

  7. Angirasa, D.: Mixed convection in a vented enclosure with an isothermal vertical surface. Fluid Dyn. Res. 26(4), 219–233 (2000)

    Article  Google Scholar 

  8. Bansod, V.J., Jadhav, R.K.: Effect of double stratification on mixed convection heat and mass transfer from a vertical surface in a fluid-saturated porous medium. Heat Transf. 39, 378 (2010)

    Google Scholar 

  9. Chamkha, A.J.: Non-Darcy fully developed mixed convection in a porous medium chanel with heat generation/absorption and hydro magnetic effects. Numer. Heat Transf. (Part A) 32, 653–675 (1997)

    Article  Google Scholar 

  10. Chamkha, A.J.: Mixed convection flow along a vertical permeable plate embedded in a porous medium in the presence of transverse magnetic field. Numer. Heat Transf. (Part A) 34, 93–103 (1998)

    Article  Google Scholar 

  11. Chang, W.J., Chang, W.L.: Mixed convection in a vertical tube partially filled with porous medium. Numeri. Heat Transf. (Part A) 28, 739–754 (1995)

    Article  Google Scholar 

  12. Chen, C.H.: Non-Darcy mixed convection from a horizontal surface with variable surface heat flux in porous medium. Numer. Heat Transf. (Part A) 30, 859–869 (1996)

    Article  Google Scholar 

  13. Chou, F.C.: Effect of stagnant conductivity on non-Darcian mixed convection in horizontal square packed chanels. Numer. Heat Transf. (Part A) 27, 195–209 (1995)

    Article  Google Scholar 

  14. Prasad, V., Lai, F.A., Kulacki, F.A.: Mixed convection in horizontal porous layers heated from below. J. Heat Transf. 110, 395–402 (1988)

    Article  Google Scholar 

  15. Chena, C.K., Chen, C.H.: Nonuniform porosity and non-Darcian effects on conjugate mixed convection heat transfer from a plate fin in porous media. Int. J. Heat Fluid Flow 11, 65–71 (1990)

    Article  Google Scholar 

  16. El-Amin, M.F., Ebrahiem, N.A., Salama, A., Sun, S.: Radiative mixed convection over an isothermal cone embedded in a porous medium with variable permeability. J. Appl. Math. (2011)

  17. Elbashbeshy, E.M.A.: The mixed convection along a vertical plate embedded in non-Darcian porous medium with suction and injection. Appl. Math. Comput. 136, 139–149 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hassanien, I.A., Al-arabi, T.H.: Non-Darcy unsteady mixed convection flow near the stagnation point on a heated vertical surface embedded in a porous medium with thermal radiation and variable viscosity. Commun. Nonlinear Sci. Numer. Simul. 14, 1366–1376 (2009)

    Article  Google Scholar 

  19. Jayanthi, S., Kumari, M.: Effect of variable viscosity on non-Darcy free or mixed convection flow on a vertical surface in non newtonian fluid saturated porous medium. Appl. Math. Comput. 186, 1643–1659 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Khanafer, K., Vafai, K.: Double diffusive mixed convection in a lid-driven enclosure filled with a fluid saturated porous media. Numer. Heat Transf. Part A 42(5), 465–486 (2002)

    Article  Google Scholar 

  21. Wong, K.C., Saeid, N.H.: Numerical study of non-Darcian effects on jet impingement cooling in a horizontal porous layer in the mixed convection regime. Int. Commun. Heat Mass Transf. 36, 45–50 (2009)

    Article  Google Scholar 

  22. Lai, F.C.: Mixed convection in saturated porous media. In: Vafai, K. (ed.) Hand Book of Porous Media, pp. 605–661. Marcel Dekker, New York (2000)

    Google Scholar 

  23. Kumar, B.V.R., Krishna Murthy, S.V.S.S.N.V.G., Sangwan, V., Nigam, M., Chandra, P.: Non-Darcy mixed convection in a fluid saturated square porous enclosure under suction effect: part-I. J. Porous Media 13(6), 537–554 (2010)

    Article  Google Scholar 

  24. Roslinda, N., Norsarahaida, A., Diana, F., Pop, I.: The Brinkman model for the mixed convection boundary layer flow past a horizontal circular cylinder in a porous medium. Int. J. Heat Mass Transf. 46, 3167–3178 (2003)

    Article  MATH  Google Scholar 

  25. Singh, N.P., Singh, A.K., Singh, H.: Mixed convection flowpast a porous vertical plate bounded by a porous medium in a rotating system in the presence of magnetic filed. J. Porous Media 13(7), 623–633 (2010)

    Article  Google Scholar 

  26. Mahmud, S., Pop, I.: Mixed convection in square vented enclosure filled with a porous medium. Int. J. Heat Mass Transf. 49, 2190–2206 (2006)

    Article  MATH  Google Scholar 

  27. Srinivasacharya, D., RamReddy, Ch.: Mixed convection in a doubly stratified micropolar fluid saturated non-darcy porous medium. Can. J. Chem. Eng., Article first published online (2011)

  28. Kurdyumov, V., Linan, A.: Free and forced convection around line sources of heat and heated cylinders in porous media. J. Fluid Mech. 427, 389–409 (2001)

    Article  MATH  Google Scholar 

  29. Vafai, K., Hadim, H.: Overview of current computational studies of heat transfer in porous media and their applications—natural and mixed convection. In: Mikowycz, W.J., Sparrow, E.M. (eds.) Advances in Numerical Heat Transfer, pp. 331–369. Taylor & Francis, New York (2000)

    Google Scholar 

  30. Waheed, M.A., Odewole, G.A., Algbe, S.O.: Mixed convective heat transfer in rectangular enclosures filled with porous media. ARPN J. Eng. Appl. Sci. 6(8), 47–60 (2011)

    Google Scholar 

  31. Beckermann, C., Viskanta, R., Ramadhyani, S.: A numerical study of non Darcian natural convection in a vertical enclosure filled with a porous medium. Numer. Heat Transf.—A 10, 557–570 (1986)

    Google Scholar 

  32. Shiralkar, G., Haajizadeh, M., Tien, C.L.: Numerical study of high Rayleigh number numerical convection in a porous enclosure. Numer. Heat Transf.—A 6, 223–234 (1983)

    MATH  Google Scholar 

  33. Trevisan, O.V., Bejan, A.: Mass and heat transfer by natural convection in a vertical slot filled with a porous media. Int. J. Heat Mass Transf. 29(8), 403–415 (1986)

    Article  MATH  Google Scholar 

  34. Walker, K.L., Homsy, G.M.: Convection in a porous cavity. J. Fluid Mech. 87, 449–474 (1978)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work has been carried out under the SERB,DST, Govt. of India sponsored project. The authors are thankful to SERB,DST, Govt. of India for providing the SRA fellowship to the third author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. V. Rathish Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, B.V.R., Nigam, M., Kumari, P. et al. Parallel numerical computation of mixed convection in a square enclosure with multiple heat sources on Anucluster. Int J Adv Eng Sci Appl Math 7, 96–105 (2015). https://doi.org/10.1007/s12572-015-0131-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12572-015-0131-4

Keywords

Navigation