Skip to main content
Log in

Comparison of numerical solutions of the Boltzmann and the Navier–Stokes equations for a moving rigid circular body in a micro scaled cavity

  • Published:
International Journal of Advances in Engineering Sciences and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper we present a simulation of a moving rigid circular body suspended in a cavity containing a rarefied gas. The rigid body moves due the flow developed in the gas by continuous uniform motion of one of the wall of the cavity. The flow in the gas is simulated by solving the Boltzmann equation using DSMC particle method. The motion of the rigid body is governed by Newton–Euler equations, where the force and the torque on the rigid body are computed from the momentum transfer of the gas molecules colliding with the rigid body. On the other hand, the motion of rigid body influences the gas flow in its surroundings. The numerical solutions obtained for the dynamics of the rigid body by solving the Boltzmann equation implementing moment and momentum approaches in the DSMC framework are compared. Furthermore, the numerical solutions obtained by solving the Boltzmann equation implementing momentum approach in DSMC framework are compared with the solutions obtained by solving the Navier–Stokes equations using finite pointset method for small as well as large values of Knudsen numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Karniadakis, G., Beskok, A., Aluru, N.: Microflows and Nanoflows: Fundamentals and Simulations. Springer, New York (2005)

    Google Scholar 

  2. Dechriste’, G., Mieussens, L.: Numerical simulation of micro flows with moving obstacles. J. Phys. 362, 012030 (2012)

    Google Scholar 

  3. Gallis, M.A., Rader, D.J., Torczynski, J.R.: Thermophoresis in rarefied gas flows. Aerosol Sci. Technol. 36, 10991117 (2002)

    Article  Google Scholar 

  4. Russo, G., Filbet, F.: Semi-lagrangian schemes applied to moving boundary problems for the BGK model of rarefied gas dynamics. Kinet. Relat. Model. 2, 231–252 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Tsuji, T., Aoki, K.: Moving boundary problems for a rarefied gas: Spatially one dimensional case. J. Comput. Phys. 250, 574–600 (2013)

    Article  MathSciNet  Google Scholar 

  6. Tiwari, S., Klar, A., Hardt, S., Donkov, A.: Simulation of a moving liquid droplet inside a rarefied gas region. Comput. Fluids 71, 283–296 (2013)

    Article  MathSciNet  Google Scholar 

  7. Shrestha, S., Tiwari, S., Klar, A., Hardt, S.: Numerical simulation of a moving rigid body in a rarefied gas. J. Comp. Phys. 293, 239–252 (2015)

    Article  MathSciNet  Google Scholar 

  8. Stefanov, S., Gospodinov, P., Cercignani, C.: Monte carlo simulation and Navier–Stokes finite difference calculation of unsteady-state rarefied gas flows. Phys. Fluids 10, 289 (1998)

    Article  Google Scholar 

  9. Bird, G.A.: Molecular Gas Dynamics and Direct Simulation of Gas Flows. Clarendon, Oxford (1994)

    Google Scholar 

  10. Cercignani, C., Illner, R., Pulvirenti, M.: The Mathematical Theory of Dilute Gases. Springer, Berlin (1994)

    Book  MATH  Google Scholar 

  11. Cerciganani, C.: The Boltzmann Equation and its Applications. Springer, Berlin (1988)

    Book  Google Scholar 

  12. Tiwari, S.: Domain Decomposition in Particle Methods for the Boltzmann and Euler Equation. Shaker Verlag, Aachen (1998)

    Google Scholar 

  13. Chapman, S., Cowling, T.G.: The Mathematical Theory of Non-uniform Gases. Cambridge University Press, Cambridge (1970)

    Google Scholar 

  14. Grad, H.: On the kinetic theory of rarefied gases. Commun. Pure Appl. Math. 2(4), 331–407 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  15. Babovsky, H., Illner, R.: A convergence proof for Nanbu’s simulation method for the Boltzmann equation. SIAM J. Numer. Anal. 26, 45–64 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  16. Neunzert, H., Struckmeier, J.: Particle methods for the Boltzmann equation. Acta Numer. 4, 417–457 (1995)

    Article  MathSciNet  Google Scholar 

  17. Tiwari, S., Klar, A., Hardt, S.: A particle–particle hybrid method for kinetic and continuum equations. J. Comput. Phys. 228, 7109–7124 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Tiwari, S.: A LSQ-SPH approach for solving compressible viscous flows. In: Freistueler, H., Warnecke, G. (eds.) Hyperbolic Problems: Theory, Numerics, Application, Volume 141 of International Series of Numerical Mathematics, pp. 901–910. Birkhaeuser, Basel (2001)

    Chapter  Google Scholar 

  19. Jie, D., Diao, X., Cheong, K.B., Yong, L.K.: Navier–Stokes simulation of gas flow in micro devices. J. Micromech. Microeng. 10, 372–397 (2000)

    Article  MATH  Google Scholar 

  20. Nie, X., Dollen, G.D., Chen, S.: Lattice–Boltzmann simulations of fluid flows in mems. J. Stat. Phys. 107(1–2), 279–289 (2002)

    Article  MATH  Google Scholar 

  21. Naris, S., Valougeoris, D.: The Driven cavity flow over the whole range of the Knudsen number. Phys. Fluid 17, 097106 (2005)

    Article  Google Scholar 

  22. Oran, E.S., Oh, C.K., Cybyk, B.Z.: Direct simulation monte carlo: Recent advances and applications. Annu. Rev. Fluid Mech. 30, 403–441 (1998)

    Article  MathSciNet  Google Scholar 

  23. Tiwari, S., Kuhnert, J.: Modeling two phase flows with surface tension by finite pointset method (FPM). J. Comput. Appl. Math. 203, 376–386 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work is partially supported by the German research foundation, DFG grant KL 1105/20-1 and by the DAAD Ph.D. programme MIC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudarshan Tiwari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shrestha, S., Tiwari, S. & Klar, A. Comparison of numerical solutions of the Boltzmann and the Navier–Stokes equations for a moving rigid circular body in a micro scaled cavity. Int J Adv Eng Sci Appl Math 7, 38–50 (2015). https://doi.org/10.1007/s12572-015-0125-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12572-015-0125-2

Keywords

Navigation