Skip to main content
Log in

Abstract

In this paper, we study the capacity of a multihop relay network with decode-and-forward strategy at each of the relay nodes. We consider both transmission power and processing power consumption at each link and a total network power constraint. We characterize the optimal number of hops that achieves maximum end-to-end throughput. In one special case, we derive an analytical expression for this optimal number of hops and show that it depends inversely on the computational power at each link. Both full-duplex (FD) and half-duplex (HD) operation of the nodes are considered and we also characterize situations in which HD operation provides higher throughput than FD operation. The effect of interference cancellation at the relay nodes is considered and the improvement in throughput is quantified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Avestimehr, A., Diggavi, S., Tse, D.: Wireless network information flow: a deterministic approach. IEEE Trans. Inform. Theory 57(4), 1872–1905 (2011). doi:10.1109/TIT.2011.2110110

    Article  MathSciNet  Google Scholar 

  2. Chiang, M., Hande, P., Lan, T., Tan, C.W.: Power control in wireless cellular networks. Found. Trends Netw. 2, 381–533 (2008)

    Article  Google Scholar 

  3. Cover, T., Gamal, A.: Capacity theorems for the relay channel. IEEE Trans. Inform. Theory 25(5), 572–584 (1979). doi:10.1109/TIT.1979.1056084

    Article  MathSciNet  MATH  Google Scholar 

  4. Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley, New York (2006)

    Google Scholar 

  5. Dhaka, K., Mallik, R., Schober, R.: Performance analysis of decode-and-forward multi-hop communication: a difference equation approach. IEEE Trans. Commun. 60(2), 339–345 (2012). doi:10.1109/TCOMM.2012.12.100705

    Article  Google Scholar 

  6. Farhadi G., Beaulieu N. (2009) Power-optimized amplify-and-forward multi-hop relaying systems. IEEE Trans. Wirel. Commun. 8(9):4634–4643 doi:10.1109/TWC.2009.080987

    Article  Google Scholar 

  7. Farhadi, G., Cioffi, J.: Spectral efficient multihop relaying based on alternate transmission. IEEE Trans. Wirel. Commun. 10(11), 3601–3606 (2011). doi:10.1109/TWC.2011.092011.102059

    Article  Google Scholar 

  8. Gomez-Vilardebo, J., Perez-Neira, A.: Bounds on maximum rate-per-energy for orthogonal AWGN multiple-relay channels. IEEE Trans. Wirel. Commun. 7(11), 4238–4247 (2008). doi:10.1109/T-WC.2008.070486

    Article  Google Scholar 

  9. Host-Madsen, A., Zhang, J.: Capacity bounds and power allocation for wireless relay channels. IEEE Trans. Inform. Theory 51(6), 2020–2040 (2005). doi:10.1109/TIT.2005.847703

    Article  MathSciNet  Google Scholar 

  10. Ikki, S., Aissa, S.: Multihop wireless relaying systems in the presence of cochannel interferences: Performance analysis and design optimization. IEEE Trans. Veh. Technol. 61(2), 566–573 (2012). doi:10.1109/TVT.2011.2179818

    Article  MathSciNet  Google Scholar 

  11. Khojastepour, M., Sabharwal, A., Aazhang, B.: On the capacity of ‘cheap’ relay networks. In: Proceedings of 37th CISS. The Johns Hopkins University, Baltimore (2003)

  12. Kramer, G., Gastpar, M., Gupta, P.: Cooperative strategies and capacity theorems for relay networks. IEEE Trans. Inform. Theory 51(9), 3037–3063 (2005). doi:10.1109/TIT.2005.853304

    Article  MathSciNet  Google Scholar 

  13. Laneman, J., Tse, D., Wornell, G.: Cooperative diversity in wireless networks: efficient protocols and outage behavior. IEEE Trans. Inform. Theory 50(12), 3062–3080 (2004). doi:10.1109/TIT.2004.838089

    Article  MathSciNet  Google Scholar 

  14. Meulen, V.D.: Three terminal communication channels. Adv. Appl. Probab. 3, 120–154 (1971)

    Article  MATH  Google Scholar 

  15. Ngo, H.Q., Larsson, E.: Linear multihop amplify-and-forward relay channels: error exponent and optimal number of hops. IEEE Trans. Wirel. Commun. 10(11), 3834–3842 (2011). doi:10.1109/TWC.2011.092011.102194

    Article  Google Scholar 

  16. Ong, L., Motani, M.: Optimal routing for decode-forward in cooperative wireless networks. IEEE Trans. Commun. 58(8), 2345–2355 (2010). doi:10.1109/TCOMM.2010.08.090134

    Article  Google Scholar 

  17. Reznik, A., Kulkarni, S., Verdu, S.: Degraded Gaussian multirelay channel: capacity and optimal power allocation. IEEE Trans. Inform. Theory 50(12), 3037–3046 (2004). doi:10.1109/TIT.2004.838373

    Article  MathSciNet  Google Scholar 

  18. Sagias, N., Lazarakis, F., Tombras, G., Datsikas, C.: Outage analysis of decode-and-forward relaying over Nakagami fading channels. IEEE Signal Process. Lett. 15, 41–44 (2008). doi:10.1109/LSP.2007.910317

    Article  Google Scholar 

  19. Shah, V., Mehta, N., Yim, R.: The relay selection and transmission trade-off in cooperative communication systems. IEEE Trans. Wirel. Commun. 9(8), 2505–2515 (2010). doi:10.1109/TWC.2010.070710.090487

    Article  Google Scholar 

  20. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948)

    MathSciNet  MATH  Google Scholar 

  21. Sikora, M., Laneman, J., Haenggi, M., Costello, D., Fuja, T.: Bandwidth- and power-efficient routing in linear wireless networks. IEEE Trans. Inform. Theory 52(6), 2624–2633 (2006). doi:10.1109/TIT.2006.874520

    Article  MathSciNet  Google Scholar 

  22. Vaze, R., Heath, R.: To code in space and time or not in multihop relay channels. IEEE Trans. Signal Process. 57(7), 2736–2747 (2009). doi:10.1109/TSP.2009.2017002

    Article  MathSciNet  Google Scholar 

  23. Xie, L.L., Kumar, P.R.: An achievable rate for the multiple-level relay channel. IEEE Trans. Inform. Theory 51(4), 1348–1358 (2005)

    Article  MathSciNet  Google Scholar 

  24. Zhang, W., Stojanovic, M., Mitra, U.: Analysis of a linear multihop underwater acoustic network. IEEE J. Ocean. Eng. 35(4), 961–970 (2010). doi:10.1109/JOE.2010.2055271

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinesh Rajan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajan, D. Optimum number of hops in linear multihop wireless networks. Int J Adv Eng Sci Appl Math 5, 32–42 (2013). https://doi.org/10.1007/s12572-013-0080-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12572-013-0080-8

Keywords

Navigation