Skip to main content
Log in

Effect of thermal stratification on MHD free convection with heat and mass transfer over an unsteady stretching surface with heat source, Hall current and chemical reaction

  • Published:
International Journal of Advances in Engineering Sciences and Applied Mathematics Aims and scope Submit manuscript

Abstract

The present investigation is concerned with the effect of thermal stratification on magnetohydrodynamic free convection boundary layer flow with heat and mass transfer of an electrically conducting fluid over an unsteady stretching sheet in the presence of strong magnetic field. The electron–atom collision frequency is assumed to be relatively high, so that the Hall effect is assumed to be exist, while induced magnetic field is neglected. The transformed nonlinear boundary layer equations are solved numerically by applying Keller-box method. Effect of Prandtl number, magnetic parameter, Hall parameter, heat source parameter, radiation parameter, Schmidt number, chemical reaction parameter, Grashof number, modified Grashof number, as well as the local skin friction coefficient, heat and mass transfer rates are depicted graphically and in tabulated form. It has been found that these parameters affect considerably the considered flow characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

C f :

Local skin friction

c p :

Specific heat at constant pressure

M :

Magnetic parameter

m :

Hall parameter

D :

Mass diffusion coefficient

g :

Magnitude of acceleration due to gravity

Gr x :

Grashof number

Gc x :

Modified Grashof number

Sc :

Schmidt number

Nu x :

Nusselt number

Sh x :

Sherwood number

Pr:

Prandtl number

q r :

Radiative heat flux

R :

Thermal radiation parameter

Rex :

Local Reynolds number

T :

Temperature of the fluid

t :

Time

U :

Surface velocity

u :

Fluid velocity in x-direction

v :

Fluid velocity in y-direction

w :

Fluid velocity in z-direction

x, y, z :

Cartesian co-ordinates

T w :

Surface temperature

T :

Free stream temperature

n, c :

Constants

C w :

Surface concentration

C :

Free stream concentration

B :

Magnetic field

k 0 :

rate of chemical reaction

k* :

Mean absorption coefficient

β:

Heat source parameter

γ:

Chemical reaction parameter

ξ:

Similarity variable

η:

Similarity variable

ψ:

Stream function

κ:

Thermal conductivity

μ:

Dynamic viscosity of the fluid

ν:

Kinematic viscosity

ρ:

Density of fluid

σ* :

Stefan–Boltzmann constant

β:

Coefficient of thermal expansion

β* :

Coefficient of expansion with concentration

σ:

Electrical conductivity of the fluid

ϕ:

Similarity concentration function

θ:

Similarity temperature function

′:

Differentiation with respect to η

w :

Surface condition

∞:

Free stream condition

References

  1. Chakrabarti, A., Gupta, A.S.: Hydromagnetic flow and heat transfer over a stretching sheet. Q. Appl. Math. 33, 73–78 (1979)

    Google Scholar 

  2. Abd El-Aziz, M., Salem, A.M.: MHD-mixed convection and mass transfer from a vertical stretching sheet with diffusion of chemically reactive species and space or temperature dependent heat source. Can. J. Phys. 85(4), 359–373 (2007)

    Article  Google Scholar 

  3. Chiam, T.C.: Hydromagnetic flow over a stretching surface with a power-law velocity. Int. J. Eng. Sci. 33, 429–435 (1995)

    Article  MATH  Google Scholar 

  4. Chen, C.H.: Combined heat and mass transfer in MHD free convection from a vertical surface with Ohmic heating and viscous dissipation. Int. J. Eng. Sci. 42, 699–713 (2004)

    Article  MATH  Google Scholar 

  5. Afify, A.A.: MHD free convective flow and mass transfer over a stretching sheet with chemical reaction. Heat Mass Transf. 40, 495–500 (2004)

    Article  Google Scholar 

  6. Moralesa, L.F., Dassoa, S., Gomez, D.O., Mininni, P.: Hall effect on magnetic reconnection at the Earth’s magnetopause. J. Atmosp. Solar-Terr. Phys. 67, 1821–1826 (2005)

    Article  Google Scholar 

  7. Sato, H.: The Hall effect in the viscous flow of ionized gas between two parallel plates under transverse magnetic field. J. Phys. Soc. Jpn. 16, 29 (1961)

    Google Scholar 

  8. Tani, I.: Steady motion of conducting fluids in channels under transverse magnetic fields with consideration of Hall effect. J. Aerosp. Sci. 29, 287 (1962)

    MathSciNet  Google Scholar 

  9. Katagiri, M.: The effect Hall currents on the viscous flow magnetohydrodynamic boundary layer flow past a semi-infinite flat plate. J. Phys. Soc. Jpn. 27, 1051 (1969)

    Article  Google Scholar 

  10. Abd El-Aziz, Mohamed: Flow and heat transfer over an unsteady stretching surface with Hall effect. Meccanica 45, 97–109 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Shateyia, S., Motsa, S.S.: Boundary layer flow and double diffusion over an unsteady stretching surface with Hall effect. Chem. Eng. Commun. 198, 1545–1565 (2011)

    Article  Google Scholar 

  12. Salem, A.M., Abd El-Aziz, Mohamed: Effect of Hall current and chemical reaction on hydromagnetic flow of a stretching vertical surface with internal heat generation/absorption. Appl. Math. Model. 32, 1236–1254 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. El-Arabawy, H.A.M.: Exact solutions of mass transfer over a stretching surface with chemical reaction and suction/injection. J. Math. Stat. 5(3), 159–166 (2009)

    Article  MATH  Google Scholar 

  14. El-Aziz, M.A.: Unsteady fluid and heat flow induced by a stretching sheet with mass transfer and chemical reaction. Chem. Eng. Commun. 197, 1261–1272 (2010)

    Article  Google Scholar 

  15. Gebhart, B., Jaluria, Y., Mahajan, R., Sammakia, B.: Buoyancy induced flows and transport. Hemisphere, New York (1988)

    MATH  Google Scholar 

  16. Prandtl, L.: Essentials of fluid dynamics. Blackie, London (1952)

    MATH  Google Scholar 

  17. Jaluria, Y., Himasekhar, K.: Buoyancy induced two dimensional vertical flows in a thermally stratified environment. Comput. Fluids 11, 39–49 (1983)

    Article  MATH  Google Scholar 

  18. Kandasamy, R., Periasamy, K., Sivagnan, K.K.: Chemical reaction, heat and mass transfer on MHD flow over a vertical stretching surface with heat source and thermal stratification effects. Int. J. Heat Mass Transf. 48, 4557–4561 (2005)

    Article  MATH  Google Scholar 

  19. Byron Bird, R., Stewart, W.E., Edevin Lightfoot, N.: Transport Phenomena, p. 602. Wiley, New York (1992)

    Google Scholar 

  20. Sutton, G.W., Sherman, A.: Engineering Magnetohydrodynamics. McGraw-Hill, New York (1965)

    Google Scholar 

  21. Abo-Eldahab, E.M., Abd El Aziz, M.: Hall and ion-slip effects on MHD free convective heat generating flow past a semi-infinite vertical flat plate. Phys. Scr. A. 61, 344 (2000)

    Article  Google Scholar 

  22. Raptis, A.: Radiation and free convection flow through a porous medium. Int. Commun. Heat Mass Transf. 25, 289–295 (1998)

    Article  Google Scholar 

  23. Nakayama, A., Koyama, H.: Similarity solutions for buoyancy-induced flows over a non-isothermal curved surface in a thermally stratified porous medium. Appl. Sci. Res. 46, 309–322 (1989)

    Article  MATH  Google Scholar 

  24. Seshadri, R., Sreeshylan, N., Nath, G.: Unsteady mixed convection flow in the stagnation region of a heated vertical plate due to impulsively motion. Int. J. Heat Mass Transf. 45, 1345–1352 (2002)

    Article  MATH  Google Scholar 

  25. Pal, D., Mondal, H.: Effects of Soret Dufour, chemical reaction and thermal radiation on MHD non-Darcy unsteady mixed convective heat and mass transfer over a stretching sheet. Commun. Nonlinear Sci. Numer. Simulat. 16, 1942–1958 (2011)

    Article  Google Scholar 

  26. Cebeci, T., Bradshaw, P.: Physical and Computational Aspects of Convective Heat Transfer. Springer, New York (1988)

    Book  MATH  Google Scholar 

  27. Ali, M.E.: Heat transfer characteristics of a continuous stretching surface. Warme Stoffubertrag. 29, 227–234 (1994)

    Article  Google Scholar 

  28. Yih, K.A.: Free convection effect on MHD coupled heat and mass transfer of a moving permeable vertical surface. Int. Commum. Heat Mass Transf. 26, 95–104 (1999)

    Article  Google Scholar 

  29. Ali, F.M., Nazar, R., Arifin, N.M., Pop, I.: Effect of Hall current on MHD mixed convection boundary layer flow over a stretched vertical flat plate. Meccanica 46, 1103–1112 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We are thankful to the editor and the referees for making constructive suggestions, which have improved the presentation of this work and the Research Management Centre—UTM for the financial support through vote number 4F109 and 03J62 for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharidan Shafie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aurangzaib, Kasim, A.R.M., Mohammad, N.F. et al. Effect of thermal stratification on MHD free convection with heat and mass transfer over an unsteady stretching surface with heat source, Hall current and chemical reaction. Int J Adv Eng Sci Appl Math 4, 217–225 (2012). https://doi.org/10.1007/s12572-012-0066-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12572-012-0066-y

Keywords

Navigation